Learnable Hypergraph Laplacian for Hypergraph Learning
- URL: http://arxiv.org/abs/2106.06666v1
- Date: Sat, 12 Jun 2021 02:07:07 GMT
- Title: Learnable Hypergraph Laplacian for Hypergraph Learning
- Authors: Jiying Zhang, Yuzhao Chen, Xi Xiao, Runiu Lu, Shu-Tao Xia
- Abstract summary: HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
- Score: 34.28748027233654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their
potential in modeling high-order relations preserved in graph structured data.
However, most existing convolution filters are localized and determined by the
pre-defined initial hypergraph topology, neglecting to explore implicit and
long-ange relations in real-world data. In this paper, we propose the first
learning-based method tailored for constructing adaptive hypergraph structure,
termed HypERgrAph Laplacian aDaptor (HERALD), which serves as a generic
plug-in-play module for improving the representational power of HGCNNs.
Specifically, HERALD adaptively optimizes the adjacency relationship between
hypernodes and hyperedges in an end-to-end manner and thus the task-aware
hypergraph is learned. Furthermore, HERALD employs the self-attention mechanism
to capture the non-local paired-nodes relation. Extensive experiments on
various popular hypergraph datasets for node classification and graph
classification tasks demonstrate that our approach obtains consistent and
considerable performance enhancement, proving its effectiveness and
generalization ability.
Related papers
- Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
We propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT)
HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges.
It achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns.
arXiv Detail & Related papers (2023-12-18T17:50:52Z) - Self-Supervised Pretraining for Heterogeneous Hypergraph Neural Networks [9.987252149421982]
We present a novel self-supervised pretraining framework for heterogeneous HyperGNNs.
Our method is able to effectively capture higher-order relations among entities in the data in a self-supervised manner.
Our experiments show that our proposed framework consistently outperforms state-of-the-art baselines in various downstream tasks.
arXiv Detail & Related papers (2023-11-19T16:34:56Z) - Learning from Heterogeneity: A Dynamic Learning Framework for Hypergraphs [22.64740740462169]
We propose a hypergraph learning framework named LFH that is capable of dynamic hyperedge construction and attentive embedding update.
To evaluate the effectiveness of our proposed framework, we conduct comprehensive experiments on several popular datasets.
arXiv Detail & Related papers (2023-07-07T06:26:44Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
We present an expressive family of parameterized, hypergraph-regularized energy functions.
We then demonstrate how minimizers of these energies effectively serve as node embeddings.
We draw parallels between the proposed bilevel hypergraph optimization, and existing GNN architectures in common use.
arXiv Detail & Related papers (2023-06-16T04:40:59Z) - Tensorized Hypergraph Neural Networks [69.65385474777031]
We propose a novel adjacency-tensor-based textbfTensorized textbfHypergraph textbfNeural textbfNetwork (THNN)
THNN is faithful hypergraph modeling framework through high-order outer product feature passing message.
Results from experiments on two widely used hypergraph datasets for 3-D visual object classification show the model's promising performance.
arXiv Detail & Related papers (2023-06-05T03:26:06Z) - Augmentations in Hypergraph Contrastive Learning: Fabricated and
Generative [126.0985540285981]
We apply the contrastive learning approach from images/graphs (we refer to it as HyperGCL) to improve generalizability of hypergraph neural networks.
We fabricate two schemes to augment hyperedges with higher-order relations encoded, and adopt three augmentation strategies from graph-structured data.
We propose a hypergraph generative model to generate augmented views, and then an end-to-end differentiable pipeline to jointly learn hypergraph augmentations and model parameters.
arXiv Detail & Related papers (2022-10-07T20:12:20Z) - Equivariant Hypergraph Diffusion Neural Operators [81.32770440890303]
Hypergraph neural networks (HNNs) using neural networks to encode hypergraphs provide a promising way to model higher-order relations in data.
This work proposes a new HNN architecture named ED-HNN, which provably represents any continuous equivariant hypergraph diffusion operators.
We evaluate ED-HNN for node classification on nine real-world hypergraph datasets.
arXiv Detail & Related papers (2022-07-14T06:17:00Z) - Hypergraph Convolutional Networks via Equivalency between Hypergraphs
and Undirected Graphs [59.71134113268709]
We present General Hypergraph Spectral Convolution(GHSC), a general learning framework that can handle EDVW and EIVW hypergraphs.
In this paper, we show that the proposed framework can achieve state-of-the-art performance.
Experiments from various domains including social network analysis, visual objective classification, protein learning demonstrate that the proposed framework can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-31T10:46:47Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-10T12:37:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.