From Hypergraph Energy Functions to Hypergraph Neural Networks
- URL: http://arxiv.org/abs/2306.09623v2
- Date: Mon, 19 Jun 2023 01:41:22 GMT
- Title: From Hypergraph Energy Functions to Hypergraph Neural Networks
- Authors: Yuxin Wang, Quan Gan, Xipeng Qiu, Xuanjing Huang, David Wipf
- Abstract summary: We present an expressive family of parameterized, hypergraph-regularized energy functions.
We then demonstrate how minimizers of these energies effectively serve as node embeddings.
We draw parallels between the proposed bilevel hypergraph optimization, and existing GNN architectures in common use.
- Score: 94.88564151540459
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hypergraphs are a powerful abstraction for representing higher-order
interactions between entities of interest. To exploit these relationships in
making downstream predictions, a variety of hypergraph neural network
architectures have recently been proposed, in large part building upon
precursors from the more traditional graph neural network (GNN) literature.
Somewhat differently, in this paper we begin by presenting an expressive family
of parameterized, hypergraph-regularized energy functions. We then demonstrate
how minimizers of these energies effectively serve as node embeddings that,
when paired with a parameterized classifier, can be trained end-to-end via a
supervised bilevel optimization process. Later, we draw parallels between the
implicit architecture of the predictive models emerging from the proposed
bilevel hypergraph optimization, and existing GNN architectures in common use.
Empirically, we demonstrate state-of-the-art results on various hypergraph node
classification benchmarks. Code is available at
https://github.com/yxzwang/PhenomNN.
Related papers
- Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
We propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT)
HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges.
It achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns.
arXiv Detail & Related papers (2023-12-18T17:50:52Z) - Hypergraph Echo State Network [0.0]
A hypergraph as a generalization of graphs records higher-order interactions among nodes, yields a more flexible network model, and allows non-linear features for a group of nodes.
We propose a hypergraph echo state network (HypergraphESN) as a generalization of graph echo state network (GraphESN) for efficient processing of hypergraph-structured data.
arXiv Detail & Related papers (2023-10-16T08:35:23Z) - UniG-Encoder: A Universal Feature Encoder for Graph and Hypergraph Node
Classification [6.977634174845066]
A universal feature encoder for both graph and hypergraph representation learning is designed, called UniG-Encoder.
The architecture starts with a forward transformation of the topological relationships of connected nodes into edge or hyperedge features.
The encoded node embeddings are then derived from the reversed transformation, described by the transpose of the projection matrix.
arXiv Detail & Related papers (2023-08-03T09:32:50Z) - Tensorized Hypergraph Neural Networks [69.65385474777031]
We propose a novel adjacency-tensor-based textbfTensorized textbfHypergraph textbfNeural textbfNetwork (THNN)
THNN is faithful hypergraph modeling framework through high-order outer product feature passing message.
Results from experiments on two widely used hypergraph datasets for 3-D visual object classification show the model's promising performance.
arXiv Detail & Related papers (2023-06-05T03:26:06Z) - Equivariant Hypergraph Diffusion Neural Operators [81.32770440890303]
Hypergraph neural networks (HNNs) using neural networks to encode hypergraphs provide a promising way to model higher-order relations in data.
This work proposes a new HNN architecture named ED-HNN, which provably represents any continuous equivariant hypergraph diffusion operators.
We evaluate ED-HNN for node classification on nine real-world hypergraph datasets.
arXiv Detail & Related papers (2022-07-14T06:17:00Z) - Message Passing Neural Networks for Hypergraphs [6.999112784624749]
We present the first graph neural network based on message passing capable of processing hypergraph-structured data.
We show that the proposed model defines a design space for neural network models for hypergraphs, thus generalizing existing models for hypergraphs.
arXiv Detail & Related papers (2022-03-31T12:38:22Z) - Hypergraph Convolutional Networks via Equivalency between Hypergraphs
and Undirected Graphs [59.71134113268709]
We present General Hypergraph Spectral Convolution(GHSC), a general learning framework that can handle EDVW and EIVW hypergraphs.
In this paper, we show that the proposed framework can achieve state-of-the-art performance.
Experiments from various domains including social network analysis, visual objective classification, protein learning demonstrate that the proposed framework can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-31T10:46:47Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-12T02:07:07Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-10T12:37:55Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.