論文の概要: Exploiting Parallel Corpora to Improve Multilingual Embedding based
Document and Sentence Alignment
- arxiv url: http://arxiv.org/abs/2106.06766v1
- Date: Sat, 12 Jun 2021 13:00:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-19 18:02:10.468251
- Title: Exploiting Parallel Corpora to Improve Multilingual Embedding based
Document and Sentence Alignment
- Title(参考訳): 多言語埋め込みに基づく文書・文アライメント改善のための並列コーパスの展開
- Authors: Dilan Sachintha, Lakmali Piyarathna, Charith Rajitha, Surangika
Ranathunga
- Abstract要約: 本稿では,文書・文アライメントにおける多言語文表現の性能向上のために,小型並列コーパスを用いた重み付け機構を提案する。
新たに作成されたSinhala- English,Tamil- English,Sinhala-Tamilのデータセットの結果から,この新たな重み付け機構は文書のアライメントと文のアライメントを大幅に改善することが示された。
- 参考スコア(独自算出の注目度): 1.5293427903448025
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multilingual sentence representations pose a great advantage for low-resource
languages that do not have enough data to build monolingual models on their
own. These multilingual sentence representations have been separately exploited
by few research for document and sentence alignment. However, most of the
low-resource languages are under-represented in these pre-trained models. Thus,
in the context of low-resource languages, these models have to be fine-tuned
for the task at hand, using additional data sources. This paper presents a
weighting mechanism that makes use of available small-scale parallel corpora to
improve the performance of multilingual sentence representations on document
and sentence alignment. Experiments are conducted with respect to two
low-resource languages, Sinhala and Tamil. Results on a newly created dataset
of Sinhala-English, Tamil-English, and Sinhala-Tamil show that this new
weighting mechanism significantly improves both document and sentence
alignment. This dataset, as well as the source-code, is publicly released.
- Abstract(参考訳): 多言語文表現は、単独でモノリンガルモデルを構築するのに十分なデータを持たない低リソース言語に対して大きな利点をもたらす。
これらの多言語文表現は文書や文のアライメントについてはほとんど研究されていない。
しかし、低リソース言語のほとんどは、これらの事前訓練されたモデルでは表現されていない。
したがって、低リソース言語の場合、これらのモデルは、追加のデータソースを使用して、手作業のために微調整される必要がある。
本稿では,文書・文アライメントにおける多言語文表現の性能向上のために,小型並列コーパスを用いた重み付け機構を提案する。
SinhalaとTamilの2つの低リソース言語に関する実験が行われている。
新たに作成されたSinhala- English,Tamil- English,Sinhala-Tamilのデータセットの結果から,この新たな重み付け機構は文書のアライメントと文のアライメントを大幅に改善することが示された。
このデータセットとソースコードは公開されています。
関連論文リスト
- NusaWrites: Constructing High-Quality Corpora for Underrepresented and
Extremely Low-Resource Languages [54.808217147579036]
インドネシアの地方言語について事例研究を行う。
データセット構築におけるオンラインスクラップ,人文翻訳,および母語話者による段落作成の有効性を比較した。
本研究は,母語話者による段落作成によって生成されたデータセットが,語彙的多様性と文化的内容の点で優れた品質を示すことを示す。
論文 参考訳(メタデータ) (2023-09-19T14:42:33Z) - Sinhala-English Parallel Word Dictionary Dataset [0.554780083433538]
本稿では,英語とシンハラ語に関連する多言語自然言語処理(NLP)タスクを支援する3つの並行英語・シンハラ語辞書(En-Si-dict-large,En-Si-dict-filtered,En-Si-dict-FastText)を紹介する。
論文 参考訳(メタデータ) (2023-08-04T10:21:35Z) - Dict-NMT: Bilingual Dictionary based NMT for Extremely Low Resource
Languages [1.8787713898828164]
本稿では,辞書の品質,学習データセットのサイズ,言語家族などの影響を詳細に分析する。
複数の低リソーステスト言語で得られた結果は、ベースラインよりもバイリンガル辞書ベースの方法の明確な利点を示している。
論文 参考訳(メタデータ) (2022-06-09T12:03:29Z) - OneAligner: Zero-shot Cross-lingual Transfer with One Rich-Resource
Language Pair for Low-Resource Sentence Retrieval [91.76575626229824]
文検索タスク用に特別に設計されたアライメントモデルであるOneAlignerを提案する。
大規模並列多言語コーパス(OPUS-100)の全ての言語ペアで訓練すると、このモデルは最先端の結果が得られる。
実験結果から,文アライメントタスクの性能はモノリンガルおよび並列データサイズに大きく依存することがわかった。
論文 参考訳(メタデータ) (2022-05-17T19:52:42Z) - Unsupervised Multilingual Sentence Embeddings for Parallel Corpus Mining [38.10950540247151]
単言語データのみに依存する多言語文の埋め込みを導出する新しい教師なし手法を提案する。
まず、教師なし機械翻訳を用いて合成並列コーパスを作成し、事前訓練された言語間マスキング言語モデル(XLM)を微調整する。
また, 2つの並列コーパスマイニング作業において, バニラXLMよりも22F1ポイント向上した。
論文 参考訳(メタデータ) (2021-05-21T15:39:16Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - Learning Contextualised Cross-lingual Word Embeddings and Alignments for
Extremely Low-Resource Languages Using Parallel Corpora [63.5286019659504]
そこで本稿では,小さな並列コーパスに基づく文脈型言語間単語埋め込み学習手法を提案する。
本手法は,入力文の翻訳と再構成を同時に行うLSTMエンコーダデコーダモデルを用いて単語埋め込みを実現する。
論文 参考訳(メタデータ) (2020-10-27T22:24:01Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - Parsing with Multilingual BERT, a Small Corpus, and a Small Treebank [46.626315158735615]
事前訓練された多言語文脈表現は大きな成功を収めてきたが、事前訓練されたデータの制限のため、すべての言語品種に等しく適用されない。
このことは、ラベル付き未ラベルデータがモノリンガルモデルを効果的に訓練するにはあまりに限られている、これらのモデルに馴染みのない言語多様体にとっての課題である。
本稿では,低リソース環境に多言語モデルを適用するために,言語固有の事前学習と語彙拡張の利用を提案する。
論文 参考訳(メタデータ) (2020-09-29T16:12:52Z) - Leveraging Monolingual Data with Self-Supervision for Multilingual
Neural Machine Translation [54.52971020087777]
モノリンガルデータを使用することで、マルチリンガルモデルにおける低リソース言語の翻訳品質が大幅に向上する。
自己監督は多言語モデルのゼロショット翻訳品質を改善する。
並列データやバックトランスレーションなしで、ro-en翻訳で最大33のBLEUを得る。
論文 参考訳(メタデータ) (2020-05-11T00:20:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。