論文の概要: Enhanced Hyperspectral Image Super-Resolution via RGB Fusion and TV-TV
Minimization
- arxiv url: http://arxiv.org/abs/2106.07066v1
- Date: Sun, 13 Jun 2021 18:52:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-15 15:30:51.078579
- Title: Enhanced Hyperspectral Image Super-Resolution via RGB Fusion and TV-TV
Minimization
- Title(参考訳): RGB核融合とTV-TV最小化による高スペクトル像の高分解能化
- Authors: Marija Vella, Bowen Zhang, Wei Chen, Jo\~ao F. C. Mota
- Abstract要約: ハイパースペクトル(HS)画像には、リモートセンシング、監視、天文学などの応用において重要な、詳細なスペクトル情報が含まれている。
HSカメラのハードウェア制限のため、撮像された画像は空間解像度が低い。
それらを改善するために、低分解能ハイパースペクトル画像は、融合ベースHS画像超解像と呼ばれる技術により、従来の高分解能RGB画像と融合する。
- 参考スコア(独自算出の注目度): 9.584717030078245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral (HS) images contain detailed spectral information that has
proven crucial in applications like remote sensing, surveillance, and
astronomy. However, because of hardware limitations of HS cameras, the captured
images have low spatial resolution. To improve them, the low-resolution
hyperspectral images are fused with conventional high-resolution RGB images via
a technique known as fusion based HS image super-resolution. Currently, the
best performance in this task is achieved by deep learning (DL) methods. Such
methods, however, cannot guarantee that the input measurements are satisfied in
the recovered image, since the learned parameters by the network are applied to
every test image. Conversely, model-based algorithms can typically guarantee
such measurement consistency. Inspired by these observations, we propose a
framework that integrates learning and model based methods. Experimental
results show that our method produces images of superior spatial and spectral
resolution compared to the current leading methods, whether model- or DL-based.
- Abstract(参考訳): ハイパースペクトル(HS)画像には、リモートセンシング、監視、天文学などの応用において重要な、詳細なスペクトル情報が含まれている。
しかし、HSカメラのハードウェア制限のため、撮像された画像は空間解像度が低い。
それらを改善するために、低分解能ハイパースペクトル画像は、融合ベースHS画像超解像と呼ばれる技術により、従来の高分解能RGB画像と融合する。
現在、このタスクにおける最高のパフォーマンスは、ディープラーニング(DL)メソッドによって達成されている。
しかし、ネットワークによる学習パラメータは各テスト画像に適用されるため、このような方法では、回収された画像において入力測定が満たされる保証はできない。
逆に、モデルベースのアルゴリズムはそのような測定一貫性を保証するのが一般的である。
これらの観測から着想を得て,学習とモデルに基づく手法を統合する枠組みを提案する。
実験の結果, モデルベース, dlベースいずれにおいても, 空間分解能, スペクトル分解能に優れる画像が得られた。
関連論文リスト
- Hyperspectral and Multispectral Image Fusion Using the Conditional
Denoising Diffusion Probabilistic Model [18.915369996829984]
DDPM-Fus と呼ばれる条件付きデノナイジング拡散確率モデルに基づく深部融合法を提案する。
1つの屋内および2つのリモートセンシングデータセットで行った実験は、他の高度な深層学習に基づく融合法と比較して、提案モデルが優れていることを示す。
論文 参考訳(メタデータ) (2023-07-07T07:08:52Z) - Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution [52.582632746409665]
カラー誘導DSRのためのSymmetric Uncertainty-aware Feature Transmission (SUFT)を提案する。
本手法は最先端の手法と比較して優れた性能を実現する。
論文 参考訳(メタデータ) (2023-06-01T06:35:59Z) - Hyperspectral Image Super Resolution with Real Unaligned RGB Guidance [11.711656319221072]
異種特徴抽出,多段階特徴アライメント,注意的特徴融合を含むHSI融合ネットワークを提案する。
本手法は, 既存の単一画像と核融合による超解像法に対して, 定量的評価と視覚的比較において明らかに改善されている。
論文 参考訳(メタデータ) (2023-02-13T11:56:45Z) - High Dynamic Range and Super-Resolution from Raw Image Bursts [52.341483902624006]
本稿では,露光ブラケット付きハンドヘルドカメラで撮影した原写真からの高解像度・高ダイナミックレンジカラー画像の再構成について紹介する。
提案アルゴリズムは,画像復元における最先端の学習手法と比較して,メモリ要求の少ない高速なアルゴリズムである。
実験では、ハンドヘルドカメラで野生で撮影された実際の写真に最大4ドル(約4,800円)の超高解像度な要素で優れた性能を示す。
論文 参考訳(メタデータ) (2022-07-29T13:31:28Z) - Deep Posterior Distribution-based Embedding for Hyperspectral Image
Super-resolution [75.24345439401166]
本稿では,高スペクトル画像の高次元空間スペクトル情報を効率的に効率的に埋め込む方法について述べる。
我々は,HS埋め込みを,慎重に定義されたHS埋め込みイベントの集合の後方分布の近似として定式化する。
そして,提案手法を物理的に解釈可能なソース一貫性超解像フレームワークに組み込む。
3つの一般的なベンチマークデータセットに対する実験により、PDE-Netは最先端の手法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2022-05-30T06:59:01Z) - Decoupled-and-Coupled Networks: Self-Supervised Hyperspectral Image
Super-Resolution with Subpixel Fusion [67.35540259040806]
サブピクセルレベルのHS超解像フレームワークを提案する。
名前が示すように、DC-Netはまず入力を共通(またはクロスセンサー)とセンサー固有のコンポーネントに分離する。
我々は,CSUネットの裏側に自己教師付き学習モジュールを付加し,素材の整合性を保証し,復元されたHS製品の詳細な外観を向上する。
論文 参考訳(メタデータ) (2022-05-07T23:40:36Z) - Boosting Image Super-Resolution Via Fusion of Complementary Information
Captured by Multi-Modal Sensors [21.264746234523678]
イメージスーパーレゾリューション(sr)は、低解像度光センサの画質を向上させる有望な技術である。
本稿では,安価なチャネル(可視・深度)からの補完情報を活用して,少ないパラメータを用いて高価なチャネル(熱)の画像品質を向上させる。
論文 参考訳(メタデータ) (2020-12-07T02:15:28Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
本稿では,最先端の残差学習をベースとした単一グレー/RGB画像の超解像化手法について検討する。
本稿では,空間情報とハイパースペクトルデータのスペクトル間の相関をフル活用するための空間スペクトル先行ネットワーク(SSPN)を提案する。
実験結果から,SSPSR法により高分解能高分解能高分解能画像の詳細が得られた。
論文 参考訳(メタデータ) (2020-05-18T14:25:50Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) は、それまで文献になかった解像度で高解像度でリアルな画像を生成する。
本手法は, 従来よりも高分解能, スケールファクターの知覚品質において, 最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-03-08T16:44:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。