Enhanced Hyperspectral Image Super-Resolution via RGB Fusion and TV-TV
Minimization
- URL: http://arxiv.org/abs/2106.07066v1
- Date: Sun, 13 Jun 2021 18:52:47 GMT
- Title: Enhanced Hyperspectral Image Super-Resolution via RGB Fusion and TV-TV
Minimization
- Authors: Marija Vella, Bowen Zhang, Wei Chen, Jo\~ao F. C. Mota
- Abstract summary: Hyperspectral (HS) images contain detailed spectral information that has proven crucial in applications like remote sensing, surveillance, and astronomy.
Because of hardware limitations of HS cameras, the captured images have low spatial resolution.
To improve them, the low-resolution hyperspectral images are fused with conventional high-resolution RGB images via a technique known as fusion based HS image super-resolution.
- Score: 9.584717030078245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral (HS) images contain detailed spectral information that has
proven crucial in applications like remote sensing, surveillance, and
astronomy. However, because of hardware limitations of HS cameras, the captured
images have low spatial resolution. To improve them, the low-resolution
hyperspectral images are fused with conventional high-resolution RGB images via
a technique known as fusion based HS image super-resolution. Currently, the
best performance in this task is achieved by deep learning (DL) methods. Such
methods, however, cannot guarantee that the input measurements are satisfied in
the recovered image, since the learned parameters by the network are applied to
every test image. Conversely, model-based algorithms can typically guarantee
such measurement consistency. Inspired by these observations, we propose a
framework that integrates learning and model based methods. Experimental
results show that our method produces images of superior spatial and spectral
resolution compared to the current leading methods, whether model- or DL-based.
Related papers
- Hyperspectral and Multispectral Image Fusion Using the Conditional
Denoising Diffusion Probabilistic Model [18.915369996829984]
We propose a deep fusion method based on the conditional denoising diffusion probabilistic model, called DDPM-Fus.
Experiments conducted on one indoor and two remote sensing datasets show the superiority of the proposed model when compared with other advanced deep learningbased fusion methods.
arXiv Detail & Related papers (2023-07-07T07:08:52Z) - Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution [52.582632746409665]
We propose a novel Symmetric Uncertainty-aware Feature Transmission (SUFT) for color-guided DSR.
Our method achieves superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-06-01T06:35:59Z) - Hyperspectral Image Super Resolution with Real Unaligned RGB Guidance [11.711656319221072]
We propose an HSI fusion network with heterogenous feature extractions, multi-stage feature alignments, and attentive feature fusion.
Our method obtains a clear improvement over existing single-image and fusion-based super-resolution methods on quantitative assessment as well as visual comparison.
arXiv Detail & Related papers (2023-02-13T11:56:45Z) - High Dynamic Range and Super-Resolution from Raw Image Bursts [52.341483902624006]
This paper introduces the first approach to reconstruct high-resolution, high-dynamic range color images from raw photographic bursts captured by a handheld camera with exposure bracketing.
The proposed algorithm is fast, with low memory requirements compared to state-of-the-art learning-based approaches to image restoration.
Experiments demonstrate its excellent performance with super-resolution factors of up to $times 4$ on real photographs taken in the wild with hand-held cameras.
arXiv Detail & Related papers (2022-07-29T13:31:28Z) - Deep Posterior Distribution-based Embedding for Hyperspectral Image
Super-resolution [75.24345439401166]
This paper focuses on how to embed the high-dimensional spatial-spectral information of hyperspectral (HS) images efficiently and effectively.
We formulate HS embedding as an approximation of the posterior distribution of a set of carefully-defined HS embedding events.
Then, we incorporate the proposed feature embedding scheme into a source-consistent super-resolution framework that is physically-interpretable.
Experiments over three common benchmark datasets demonstrate that PDE-Net achieves superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-30T06:59:01Z) - Decoupled-and-Coupled Networks: Self-Supervised Hyperspectral Image
Super-Resolution with Subpixel Fusion [67.35540259040806]
We propose a subpixel-level HS super-resolution framework by devising a novel decoupled-and-coupled network, called DCNet.
As the name suggests, DC-Net first decouples the input into common (or cross-sensor) and sensor-specific components.
We append a self-supervised learning module behind the CSU net by guaranteeing the material consistency to enhance the detailed appearances of the restored HS product.
arXiv Detail & Related papers (2022-05-07T23:40:36Z) - Boosting Image Super-Resolution Via Fusion of Complementary Information
Captured by Multi-Modal Sensors [21.264746234523678]
Image Super-Resolution (SR) provides a promising technique to enhance the image quality of low-resolution optical sensors.
In this paper, we attempt to leverage complementary information from a low-cost channel (visible/depth) to boost image quality of an expensive channel (thermal) using fewer parameters.
arXiv Detail & Related papers (2020-12-07T02:15:28Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) generates high-resolution, realistic images at resolutions previously unseen in the literature.
Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously possible.
arXiv Detail & Related papers (2020-03-08T16:44:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.