Floquet engineering of topological localization transitions and mobility
edges in one-dimensional non-Hermitian quasicrystals
- URL: http://arxiv.org/abs/2106.07149v4
- Date: Mon, 16 Aug 2021 15:27:00 GMT
- Title: Floquet engineering of topological localization transitions and mobility
edges in one-dimensional non-Hermitian quasicrystals
- Authors: Longwen Zhou
- Abstract summary: Time-periodic driving fields could endow a system with peculiar topological and transport features.
We find dynamically controlled localization transitions and mobility edges in non-Hermitian quasicrystals via shaking the lattice periodically.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time-periodic driving fields could endow a system with peculiar topological
and transport features. In this work, we find dynamically controlled
localization transitions and mobility edges in non-Hermitian quasicrystals via
shaking the lattice periodically. The driving force dresses the hopping
amplitudes between lattice sites, yielding alternate transitions between
localized, mobility edge and extended non-Hermitian quasicrystalline phases. We
apply our Floquet engineering approach to five representative models of
non-Hermitian quasicrystals, obtain the conditions of photon-assisted
localization transitions and mobility edges, and find the expressions of
Lyapunov exponents for some models. We further introduce topological winding
numbers of Floquet quasienergies to distinguish non-Hermitian quasicrystalline
phases with different localization nature. Our discovery thus extend the study
of quasicrystals to non-Hermitian Floquet systems, and provide an efficient way
of modulating the topological and transport properties of these unique phases.
Related papers
- Real-space detection and manipulation of topological edge modes with
ultracold atoms [56.34005280792013]
We demonstrate an experimental protocol for realizing chiral edge modes in optical lattices.
We show how to efficiently prepare particles in these edge modes in three distinct Floquet topological regimes.
We study how edge modes emerge at the interface and how the group velocity of the particles is modified as the sharpness of the potential step is varied.
arXiv Detail & Related papers (2023-04-04T17:36:30Z) - Wave packet dynamics and edge transport in anomalous Floquet topological
phases [0.0]
An anomalous Floquet topological phase can in general generate more robust chiral edge motion than a Haldane phase.
Our results demonstrate that the rich interplay of wave packet dynamics and topological edge states can serve as a versatile tool in ultracold quantum gases in optical lattices.
arXiv Detail & Related papers (2023-02-16T18:45:49Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Driving-induced multiple ${\cal PT}$-symmetry breaking transitions and
reentrant localization transitions in non-Hermitian Floquet quasicrystals [0.0]
We uncover an intriguing class of non-Hermitian Floquet matter in one-dimensional quasicrystals.
Our results not only unveil the richness of localization phenomena in driven non-Hermitian quasicrystals, but also highlight the advantage of Floquet approach in generating unique types of nonequilibrium phases in open systems.
arXiv Detail & Related papers (2022-03-08T10:50:11Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Dimerization induced mobility edges and multiple reentrant localization
transitions in non-Hermitian quasicrystals [0.0]
Non-Hermitian effects could create rich dynamical and topological phase structures.
We show that the collaboration between lattice dimerization and non-Hermiticity could generally bring about mobility edges and multiple localization transitions in one-dimensional quasicrystals.
arXiv Detail & Related papers (2021-11-16T13:01:48Z) - Topological delocalization transitions and mobility edges in the
nonreciprocal Maryland model [0.0]
Non-Hermitian effects could trigger spectrum, localization and topological phase transitions in quasiperiodic lattices.
We propose a non-Hermitian extension of the Maryland model, which forms a paradigm in the study of localization and quantum chaos.
Explicit expressions of the complex energy dispersions, phase boundaries and mobility edges are found.
arXiv Detail & Related papers (2021-08-16T15:35:52Z) - Long-lived period-doubled edge modes of interacting and disorder-free
Floquet spin chains [68.8204255655161]
We show that even in the absence of disorder, and in the presence of bulk heating, $pi$ edge modes are long lived.
A tunneling estimate for the lifetime is obtained by mapping the stroboscopic time-evolution to dynamics of a single particle in Krylov subspace.
arXiv Detail & Related papers (2021-05-28T12:13:14Z) - Non-Hermitian quasicrystal in dimerized lattices [0.0]
Non-Hermitian quasicrystals possess PT and metal-insulator transitions induced by gain and loss or nonreciprocal effects.
By investigating the spectrum, adjacent gap ratios and inverse participation ratios, we find an extended phase, a localized phase and a mobility edge phase.
arXiv Detail & Related papers (2021-05-07T14:52:47Z) - Observing localisation in a 2D quasicrystalline optical lattice [52.77024349608834]
We experimentally and numerically study the ground state of non- and weakly-interacting bosons in an eightfold symmetric optical lattice.
We find extended states for weak lattices but observe a localisation transition at a lattice depth of $V_0.78(2),E_mathrmrec$ for the non-interacting system.
arXiv Detail & Related papers (2020-01-29T15:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.