論文の概要: iNNformant: Boundary Samples as Telltale Watermarks
- arxiv url: http://arxiv.org/abs/2106.07303v1
- Date: Mon, 14 Jun 2021 11:18:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-15 15:29:01.074317
- Title: iNNformant: Boundary Samples as Telltale Watermarks
- Title(参考訳): INNformant: 境界サンプルを透かしとして
- Authors: Alexander Schl\"ogl, Tobias Kupek, Rainer B\"ohme
- Abstract要約: 4つの試験されたマイクロアーキテクチャのいずれかを識別できる境界サンプルの集合を生成することができることを示す。
これらのセットは70dBよりも悪いピーク信号-雑音比のサンプルを含まないように構築することができる。
- 参考スコア(独自算出の注目度): 68.8204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Boundary samples are special inputs to artificial neural networks crafted to
identify the execution environment used for inference by the resulting output
label. The paper presents and evaluates algorithms to generate transparent
boundary samples. Transparency refers to a small perceptual distortion of the
host signal (i.e., a natural input sample). For two established image
classifiers, ResNet on FMNIST and CIFAR10, we show that it is possible to
generate sets of boundary samples which can identify any of four tested
microarchitectures. These sets can be built to not contain any sample with a
worse peak signal-to-noise ratio than 70dB. We analyze the relationship between
search complexity and resulting transparency.
- Abstract(参考訳): 境界サンプルは、結果のアウトプットラベルによって推論に使用される実行環境を特定するために作られた人工ニューラルネットワークへの特別な入力である。
本論文は,透明境界サンプル生成のためのアルゴリズムを提示し,評価する。
透明性とは、ホスト信号(すなわち、自然な入力サンプル)の小さな知覚的歪みを指す。
FMNIST 上の ResNet と CIFAR10 の2つの画像分類器に対して,テストされた4つのマイクロアーキテクチャのいずれかを識別できる境界サンプルセットを生成することができることを示す。
これらのセットは70dbより低いピーク信号対ノイズ比のサンプルを含まないように構築できる。
検索複雑性と結果の透明性の関係を解析する。
関連論文リスト
- Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
本稿では、下流知識と事前学習指導のデータ相互作用をトレースするダウンストリーム・プレテキスト・ドメイン知識トレース(DOKT)手法を提案する。
DOKTは、トレースバックの多様性指標とドメインベースの不確実性推定器から構成される。
10のデータセットで行った実験は、我々のモデルが他の最先端の手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-20T01:34:13Z) - Mitigating Noisy Supervision Using Synthetic Samples with Soft Labels [13.314778587751588]
ノイズラベルは、特にクラウドソーシングやWeb検索から派生した大規模データセットにおいて、現実世界のデータセットにおいてユビキタスである。
トレーニング中にノイズの多いラベルを過度に適合させる傾向にあるため、ノイズの多いデータセットでディープニューラルネットワークをトレーニングすることは難しい。
ノイズラベルの影響を軽減するために,新しい合成サンプルを用いてモデルを訓練するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-22T04:49:39Z) - Texture-guided Saliency Distilling for Unsupervised Salient Object
Detection [67.10779270290305]
本研究では, 簡便かつ高精度な塩分濃度の知識を抽出するUSOD法を提案する。
提案手法は,RGB,RGB-D,RGB-T,ビデオSODベンチマーク上での最先端USOD性能を実現する。
論文 参考訳(メタデータ) (2022-07-13T02:01:07Z) - ScatterSample: Diversified Label Sampling for Data Efficient Graph
Neural Network Learning [22.278779277115234]
グラフニューラルネットワーク(GNN)トレーニングが高価であるいくつかのアプリケーションでは、新しいインスタンスのラベル付けが高価である。
データ効率のよいアクティブサンプリングフレームワークであるScatterSampleを開発し、アクティブな学習環境下でGNNを訓練する。
5つのデータセットに対する実験により、ScatterSampleは他のGNNのアクティブラーニングベースラインよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-06-09T04:05:02Z) - NeRF in detail: Learning to sample for view synthesis [104.75126790300735]
ニューラルレイディアンス場(NeRF)法は目覚ましい新しいビュー合成を実証している。
この作業では、バニラ粗大なアプローチの明確な制限に対処します -- パフォーマンスに基づいており、手元にあるタスクのエンドツーエンドをトレーニングしていません。
我々は、サンプルの提案と、そのネットワークにおける重要性を学習し、そのニューラルネットワークアーキテクチャに対する複数の代替案を検討し比較する、微分可能なモジュールを導入する。
論文 参考訳(メタデータ) (2021-06-09T17:59:10Z) - Transform consistency for learning with noisy labels [9.029861710944704]
単一のネットワークのみを用いてクリーンサンプルを同定する手法を提案する。
きれいなサンプルは元のイメージおよび変形したイメージのための一貫した予測に達することを好みます。
ノイズラベルの負の影響を軽減するために,オフラインのハードラベルとオンラインのソフトラベルを用いて分類損失を設計する。
論文 参考訳(メタデータ) (2021-03-25T14:33:13Z) - Forensicability of Deep Neural Network Inference Pipelines [68.8204255655161]
本研究では,観測可能な出力に特徴的な数値偏差をトレースすることで,機械学習パイプラインの実行環境の特性を推定する手法を提案する。
一連の概念実証実験の結果は、ディープニューラルネットワーク予測を生成するために使用されるハードウェアプラットフォームの識別など、法医学的な応用をもたらす。
論文 参考訳(メタデータ) (2021-02-01T15:41:49Z) - Bridging In- and Out-of-distribution Samples for Their Better
Discriminability [18.84265231678354]
2つの中間に位置するサンプルを考慮し、それらをネットワークのトレーニングに使用する。
我々は複数の画像変換を用いて、様々な方法で入力を破損させ、重大度レベルが異なるようなサンプルを生成する。
クリーンなIDサンプルをトレーニングしたネットワークを用いて,単一の画像変換によって生成されたサンプルが,IDとOODの間にどこにあるかを推定する。
論文 参考訳(メタデータ) (2021-01-07T11:34:18Z) - UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional
Variational Autoencoders [81.5490760424213]
データラベリングプロセスから学習することで、RGB-Dサリエンシ検出に不確実性を利用するための第1のフレームワーク(UCNet)を提案する。
そこで本研究では,サリエンシデータラベリングにヒントを得て,確率的RGB-Dサリエンシ検出ネットワークを提案する。
論文 参考訳(メタデータ) (2020-04-13T04:12:59Z) - OpenGAN: Open Set Generative Adversarial Networks [16.02382549750862]
本稿では,開集合 GAN アーキテクチャ (OpenGAN) を提案する。
与えられたソースイメージにセマンティックに類似したサンプルを生成することができます。
GANトレーニング分布外のクラスにおいて,OpenGANサンプルを用いてトレーニングデータを増強することにより,性能を著しく向上できることを示す。
論文 参考訳(メタデータ) (2020-03-18T07:24:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。