Query-Driven Topic Model
- URL: http://arxiv.org/abs/2106.07346v1
- Date: Fri, 28 May 2021 22:49:42 GMT
- Title: Query-Driven Topic Model
- Authors: Zheng Fang, Yulan He and Rob Procter
- Abstract summary: One desirable property of topic models is to allow users to find topics describing a specific aspect of the corpus.
We propose a novel query-driven topic model that allows users to specify a simple query in words or phrases and return query-related topics.
- Score: 23.07260625816975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Topic modeling is an unsupervised method for revealing the hidden semantic
structure of a corpus. It has been increasingly widely adopted as a tool in the
social sciences, including political science, digital humanities and
sociological research in general. One desirable property of topic models is to
allow users to find topics describing a specific aspect of the corpus. A
possible solution is to incorporate domain-specific knowledge into topic
modeling, but this requires a specification from domain experts. We propose a
novel query-driven topic model that allows users to specify a simple query in
words or phrases and return query-related topics, thus avoiding tedious work
from domain experts. Our proposed approach is particularly attractive when the
user-specified query has a low occurrence in a text corpus, making it difficult
for traditional topic models built on word cooccurrence patterns to identify
relevant topics. Experimental results demonstrate the effectiveness of our
model in comparison with both classical topic models and neural topic models.
Related papers
- Embedded Topic Models Enhanced by Wikification [3.082729239227955]
We incorporate the Wikipedia knowledge into a neural topic model to make it aware of named entities.
Our experiments show that our method improves the performance of neural topic models in generalizability.
arXiv Detail & Related papers (2024-10-03T12:39:14Z) - Interactive Topic Models with Optimal Transport [75.26555710661908]
We present EdTM, as an approach for label name supervised topic modeling.
EdTM models topic modeling as an assignment problem while leveraging LM/LLM based document-topic affinities.
arXiv Detail & Related papers (2024-06-28T13:57:27Z) - TopicAdapt- An Inter-Corpora Topics Adaptation Approach [27.450275637652418]
This paper proposes a neural topic model, TopicAdapt, that can adapt relevant topics from a related source corpus and also discover new topics in a target corpus that are absent in the source corpus.
Experiments over multiple datasets from diverse domains show the superiority of the proposed model against the state-of-the-art topic models.
arXiv Detail & Related papers (2023-10-08T02:56:44Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world.
The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time.
The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions.
arXiv Detail & Related papers (2023-07-25T17:59:18Z) - Federated Neural Topic Models [0.0]
Federated topic modeling allows multiple parties to jointly train a topic model without sharing their data.
We propose and analyze a federated implementation based on state-of-the-art neural topic modeling implementations.
In practice, our approach is equivalent to a centralized model training, but preserves the privacy of the nodes.
arXiv Detail & Related papers (2022-12-05T13:49:26Z) - Knowledge-Aware Bayesian Deep Topic Model [50.58975785318575]
We propose a Bayesian generative model for incorporating prior domain knowledge into hierarchical topic modeling.
Our proposed model efficiently integrates the prior knowledge and improves both hierarchical topic discovery and document representation.
arXiv Detail & Related papers (2022-09-20T09:16:05Z) - Author Clustering and Topic Estimation for Short Texts [69.54017251622211]
We propose a novel model that expands on the Latent Dirichlet Allocation by modeling strong dependence among the words in the same document.
We also simultaneously cluster users, removing the need for post-hoc cluster estimation.
Our method performs as well as -- or better -- than traditional approaches to problems arising in short text.
arXiv Detail & Related papers (2021-06-15T20:55:55Z) - Improving Neural Topic Models using Knowledge Distillation [84.66983329587073]
We use knowledge distillation to combine the best attributes of probabilistic topic models and pretrained transformers.
Our modular method can be straightforwardly applied with any neural topic model to improve topic quality.
arXiv Detail & Related papers (2020-10-05T22:49:16Z) - Topic-Aware Multi-turn Dialogue Modeling [91.52820664879432]
This paper presents a novel solution for multi-turn dialogue modeling, which segments and extracts topic-aware utterances in an unsupervised way.
Our topic-aware modeling is implemented by a newly proposed unsupervised topic-aware segmentation algorithm and Topic-Aware Dual-attention Matching (TADAM) Network.
arXiv Detail & Related papers (2020-09-26T08:43:06Z) - Keyword Assisted Topic Models [0.0]
We show that providing a small number of keywords can substantially enhance the measurement performance of topic models.
KeyATM provides more interpretable results, has better document classification performance, and is less sensitive to the number of topics than the standard topic models.
arXiv Detail & Related papers (2020-04-13T14:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.