Improving Neural Topic Models using Knowledge Distillation
- URL: http://arxiv.org/abs/2010.02377v1
- Date: Mon, 5 Oct 2020 22:49:16 GMT
- Title: Improving Neural Topic Models using Knowledge Distillation
- Authors: Alexander Hoyle, Pranav Goel, Philip Resnik
- Abstract summary: We use knowledge distillation to combine the best attributes of probabilistic topic models and pretrained transformers.
Our modular method can be straightforwardly applied with any neural topic model to improve topic quality.
- Score: 84.66983329587073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Topic models are often used to identify human-interpretable topics to help
make sense of large document collections. We use knowledge distillation to
combine the best attributes of probabilistic topic models and pretrained
transformers. Our modular method can be straightforwardly applied with any
neural topic model to improve topic quality, which we demonstrate using two
models having disparate architectures, obtaining state-of-the-art topic
coherence. We show that our adaptable framework not only improves performance
in the aggregate over all estimated topics, as is commonly reported, but also
in head-to-head comparisons of aligned topics.
Related papers
- Embedded Topic Models Enhanced by Wikification [3.082729239227955]
We incorporate the Wikipedia knowledge into a neural topic model to make it aware of named entities.
Our experiments show that our method improves the performance of neural topic models in generalizability.
arXiv Detail & Related papers (2024-10-03T12:39:14Z) - Investigating the Impact of Text Summarization on Topic Modeling [13.581341206178525]
In this paper, an approach is proposed that further enhances topic modeling performance by utilizing a pre-trained large language model (LLM)
Few shot prompting is used to generate summaries of different lengths to compare their impact on topic modeling.
The proposed method yields better topic diversity and comparable coherence values compared to previous models.
arXiv Detail & Related papers (2024-09-28T19:45:45Z) - Iterative Improvement of an Additively Regularized Topic Model [0.0]
We present a method for iterative training of a topic model.
Experiments conducted on several collections of natural language texts show that the proposed ITAR model performs better than other popular topic models.
arXiv Detail & Related papers (2024-08-11T18:22:12Z) - GINopic: Topic Modeling with Graph Isomorphism Network [0.8962460460173959]
We introduce GINopic, a topic modeling framework based on graph isomorphism networks to capture the correlation between words.
We demonstrate the effectiveness of GINopic compared to existing topic models and highlight its potential for advancing topic modeling.
arXiv Detail & Related papers (2024-04-02T17:18:48Z) - Are Neural Topic Models Broken? [81.15470302729638]
We study the relationship between automated and human evaluation of topic models.
We find that neural topic models fare worse in both respects compared to an established classical method.
arXiv Detail & Related papers (2022-10-28T14:38:50Z) - Knowledge-Aware Bayesian Deep Topic Model [50.58975785318575]
We propose a Bayesian generative model for incorporating prior domain knowledge into hierarchical topic modeling.
Our proposed model efficiently integrates the prior knowledge and improves both hierarchical topic discovery and document representation.
arXiv Detail & Related papers (2022-09-20T09:16:05Z) - Exploring Strategies for Generalizable Commonsense Reasoning with
Pre-trained Models [62.28551903638434]
We measure the impact of three different adaptation methods on the generalization and accuracy of models.
Experiments with two models show that fine-tuning performs best, by learning both the content and the structure of the task, but suffers from overfitting and limited generalization to novel answers.
We observe that alternative adaptation methods like prefix-tuning have comparable accuracy, but generalize better to unseen answers and are more robust to adversarial splits.
arXiv Detail & Related papers (2021-09-07T03:13:06Z) - Topic Adaptation and Prototype Encoding for Few-Shot Visual Storytelling [81.33107307509718]
We propose a topic adaptive storyteller to model the ability of inter-topic generalization.
We also propose a prototype encoding structure to model the ability of intra-topic derivation.
Experimental results show that topic adaptation and prototype encoding structure mutually bring benefit to the few-shot model.
arXiv Detail & Related papers (2020-08-11T03:55:11Z) - SEEK: Segmented Embedding of Knowledge Graphs [77.5307592941209]
We propose a lightweight modeling framework that can achieve highly competitive relational expressiveness without increasing the model complexity.
Our framework focuses on the design of scoring functions and highlights two critical characteristics: 1) facilitating sufficient feature interactions; 2) preserving both symmetry and antisymmetry properties of relations.
arXiv Detail & Related papers (2020-05-02T15:15:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.