An Online Riemannian PCA for Stochastic Canonical Correlation Analysis
- URL: http://arxiv.org/abs/2106.07479v1
- Date: Tue, 8 Jun 2021 23:38:29 GMT
- Title: An Online Riemannian PCA for Stochastic Canonical Correlation Analysis
- Authors: Zihang Meng, Rudrasis Chakraborty, Vikas Singh
- Abstract summary: We present an efficient algorithm (RSG+) for canonical correlation analysis (CCA) using a reparametrization of the projection matrices.
While the paper primarily focuses on the formulation and technical analysis of its properties, our experiments show that the empirical behavior on common datasets is quite promising.
- Score: 37.8212762083567
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an efficient stochastic algorithm (RSG+) for canonical correlation
analysis (CCA) using a reparametrization of the projection matrices. We show
how this reparametrization (into structured matrices), simple in hindsight,
directly presents an opportunity to repurpose/adjust mature techniques for
numerical optimization on Riemannian manifolds. Our developments nicely
complement existing methods for this problem which either require $O(d^3)$ time
complexity per iteration with $O(\frac{1}{\sqrt{t}})$ convergence rate (where
$d$ is the dimensionality) or only extract the top $1$ component with
$O(\frac{1}{t})$ convergence rate. In contrast, our algorithm offers a strict
improvement for this classical problem: it achieves $O(d^2k)$ runtime
complexity per iteration for extracting the top $k$ canonical components with
$O(\frac{1}{t})$ convergence rate. While the paper primarily focuses on the
formulation and technical analysis of its properties, our experiments show that
the empirical behavior on common datasets is quite promising. We also explore a
potential application in training fair models where the label of protected
attribute is missing or otherwise unavailable.
Related papers
- Projection by Convolution: Optimal Sample Complexity for Reinforcement Learning in Continuous-Space MDPs [56.237917407785545]
We consider the problem of learning an $varepsilon$-optimal policy in a general class of continuous-space Markov decision processes (MDPs) having smooth Bellman operators.
Key to our solution is a novel projection technique based on ideas from harmonic analysis.
Our result bridges the gap between two popular but conflicting perspectives on continuous-space MDPs.
arXiv Detail & Related papers (2024-05-10T09:58:47Z) - Optimization without Retraction on the Random Generalized Stiefel Manifold [9.301728976515255]
We propose a cheap iterative method that solves the optimization problem while having access only to random estimates of $B$.
Our method does not enforce the constraint in every iteration; instead, it produces iterations that converge to critical points on the generalized Stiefel manifold defined in expectation.
arXiv Detail & Related papers (2024-05-02T19:55:30Z) - Globally Convergent Accelerated Algorithms for Multilinear Sparse
Logistic Regression with $\ell_0$-constraints [2.323238724742687]
Multilinear logistic regression serves as a powerful tool for the analysis of multidimensional data.
We propose an Accelerated Proximal Alternating Minim-MLSR model to solve the $ell_0$-MLSR.
We also demonstrate that APALM$+$ is globally convergent to a first-order critical point as well as to establish convergence by using the Kurdy-Lojasiewicz property.
arXiv Detail & Related papers (2023-09-17T11:05:08Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Replicable Clustering [57.19013971737493]
We propose algorithms for the statistical $k$-medians, statistical $k$-means, and statistical $k$-centers problems by utilizing approximation routines for their counterparts in a black-box manner.
We also provide experiments on synthetic distributions in 2D using the $k$-means++ implementation from sklearn as a black-box that validate our theoretical results.
arXiv Detail & Related papers (2023-02-20T23:29:43Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
General tools for designing efficient private estimation algorithms.
First efficient $(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery.
arXiv Detail & Related papers (2023-01-11T09:12:28Z) - Manifold Free Riemannian Optimization [4.484251538832438]
A principled framework for solving optimization problems with a smooth manifold $mathcalM$ is proposed.
We use a noiseless sample set of the cost function $(x_i, y_i)in mathcalM times mathbbR$ and the intrinsic dimension of the manifold $mathcalM$.
arXiv Detail & Related papers (2022-09-07T16:19:06Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
We propose a novel method named Multi-block-probe Variance Reduced (MSVR) to alleviate the complexity of compositional problems.
Our results improve upon prior ones in several aspects, including the order of sample complexities and dependence on strongity.
arXiv Detail & Related papers (2022-07-18T12:03:26Z) - An Improved Analysis of Gradient Tracking for Decentralized Machine
Learning [34.144764431505486]
We consider decentralized machine learning over a network where the training data is distributed across $n$ agents.
The agent's common goal is to find a model that minimizes the average of all local loss functions.
We improve the dependency on $p$ from $mathcalO(p-1)$ to $mathcalO(p-1)$ in the noiseless case.
arXiv Detail & Related papers (2022-02-08T12:58:14Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset.
We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees.
arXiv Detail & Related papers (2021-06-16T03:34:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.