Optimization without Retraction on the Random Generalized Stiefel Manifold
- URL: http://arxiv.org/abs/2405.01702v3
- Date: Fri, 08 Nov 2024 18:17:39 GMT
- Title: Optimization without Retraction on the Random Generalized Stiefel Manifold
- Authors: Simon Vary, Pierre Ablin, Bin Gao, P. -A. Absil,
- Abstract summary: We propose a cheap iterative method that solves the optimization problem while having access only to random estimates of $B$.
Our method does not enforce the constraint in every iteration; instead, it produces iterations that converge to critical points on the generalized Stiefel manifold defined in expectation.
- Score: 9.301728976515255
- License:
- Abstract: Optimization over the set of matrices $X$ that satisfy $X^\top B X = I_p$, referred to as the generalized Stiefel manifold, appears in many applications involving sampled covariance matrices such as the canonical correlation analysis (CCA), independent component analysis (ICA), and the generalized eigenvalue problem (GEVP). Solving these problems is typically done by iterative methods that require a fully formed $B$. We propose a cheap stochastic iterative method that solves the optimization problem while having access only to random estimates of $B$. Our method does not enforce the constraint in every iteration; instead, it produces iterations that converge to critical points on the generalized Stiefel manifold defined in expectation. The method has lower per-iteration cost, requires only matrix multiplications, and has the same convergence rates as its Riemannian optimization counterparts that require the full matrix $B$. Experiments demonstrate its effectiveness in various machine learning applications involving generalized orthogonality constraints, including CCA, ICA, and the GEVP.
Related papers
- Riemannian coordinate descent algorithms on matrix manifolds [12.05722932030768]
We provide a general framework for developing computationally efficient coordinate descent (CD) algorithms on matrix manifold.
We propose CD algorithms for various manifold such as Stiefel, Grassmann, (generalized) hyperbolic, symplectic, and symmetric positive (semi)definite.
We analyze their convergence and complexity, and empirically illustrate their efficacy in several applications.
arXiv Detail & Related papers (2024-06-04T11:37:11Z) - Low-complexity subspace-descent over symmetric positive definite
manifold [9.346050098365648]
We develop low-complexity algorithms for the minimization of functions over the symmetric positive definite (SPD) manifold.
The proposed approach utilizes carefully chosen subspaces that allow the update to be written as a product of the Cholesky factor of the iterate and a sparse matrix.
arXiv Detail & Related papers (2023-05-03T11:11:46Z) - Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
with List Stability [107.65337427333064]
optimization of the Area Under the Precision-Recall Curve (AUPRC) is a crucial problem for machine learning.
In this work, we present the first trial in the single-dependent generalization of AUPRC optimization.
Experiments on three image retrieval datasets on speak to the effectiveness and soundness of our framework.
arXiv Detail & Related papers (2022-09-27T09:06:37Z) - Manifold Free Riemannian Optimization [4.484251538832438]
A principled framework for solving optimization problems with a smooth manifold $mathcalM$ is proposed.
We use a noiseless sample set of the cost function $(x_i, y_i)in mathcalM times mathbbR$ and the intrinsic dimension of the manifold $mathcalM$.
arXiv Detail & Related papers (2022-09-07T16:19:06Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
We propose a novel method named Multi-block-probe Variance Reduced (MSVR) to alleviate the complexity of compositional problems.
Our results improve upon prior ones in several aspects, including the order of sample complexities and dependence on strongity.
arXiv Detail & Related papers (2022-07-18T12:03:26Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
We consider online statistical inference of constrained nonlinear optimization problems.
We apply the Sequential Quadratic Programming (StoSQP) method to solve these problems.
arXiv Detail & Related papers (2022-05-27T00:34:03Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - Reducing the Variance of Gaussian Process Hyperparameter Optimization
with Preconditioning [54.01682318834995]
Preconditioning is a highly effective step for any iterative method involving matrix-vector multiplication.
We prove that preconditioning has an additional benefit that has been previously unexplored.
It simultaneously can reduce variance at essentially negligible cost.
arXiv Detail & Related papers (2021-07-01T06:43:11Z) - An Online Riemannian PCA for Stochastic Canonical Correlation Analysis [37.8212762083567]
We present an efficient algorithm (RSG+) for canonical correlation analysis (CCA) using a reparametrization of the projection matrices.
While the paper primarily focuses on the formulation and technical analysis of its properties, our experiments show that the empirical behavior on common datasets is quite promising.
arXiv Detail & Related papers (2021-06-08T23:38:29Z) - Linear-Sample Learning of Low-Rank Distributions [56.59844655107251]
We show that learning $ktimes k$, rank-$r$, matrices to normalized $L_1$ distance requires $Omega(frackrepsilon2)$ samples.
We propose an algorithm that uses $cal O(frackrepsilon2log2fracepsilon)$ samples, a number linear in the high dimension, and nearly linear in the matrices, typically low, rank proofs.
arXiv Detail & Related papers (2020-09-30T19:10:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.