論文の概要: Training like Playing: A Reinforcement Learning And Knowledge
Graph-based framework for building Automatic Consultation System in Medical
Field
- arxiv url: http://arxiv.org/abs/2106.07502v1
- Date: Mon, 14 Jun 2021 15:32:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-15 15:44:31.151415
- Title: Training like Playing: A Reinforcement Learning And Knowledge
Graph-based framework for building Automatic Consultation System in Medical
Field
- Title(参考訳): 遊びのようなトレーニング:医療分野における自動相談システム構築のための強化学習と知識グラフベースのフレームワーク
- Authors: Yining Huang, Meilian Chen, Keke Tang
- Abstract要約: 本稿では,知識グラフの埋め込みと強化学習機能を備えたAIベースの医療相談システムについて紹介する。
本フレームワークの実装は,患者から収集した証拠に従って診断を行うために,グラフとして整理された知識を活用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a framework for AI-based medical consultation system with
knowledge graph embedding and reinforcement learning components and its
implement. Our implement of this framework leverages knowledge organized as a
graph to have diagnosis according to evidence collected from patients
recurrently and dynamically. According to experiment we designed for evaluating
its performance, it archives a good result. More importantly, for getting
better performance, researchers can implement it on this framework based on
their innovative ideas, well designed experiments and even clinical trials.
- Abstract(参考訳): 本稿では,知識グラフ埋め込みと強化学習コンポーネントを用いたaiベースの医療相談システムとその実装について紹介する。
本手法は,知識をグラフとして活用し,患者から収集されたエビデンスに従って,かつ動的に診断を行う。
性能を評価するために設計した実験によると、良い結果をアーカイブしています。
さらに重要なのは、より優れたパフォーマンスを得るために、研究者たちが革新的なアイデア、よく設計された実験、さらには臨床試験に基づいて、このフレームワークを実装できることだ。
関連論文リスト
- Enhancing Medical Learning and Reasoning Systems: A Boxology-Based Comparative Analysis of Design Patterns [0.0]
本研究では,ハイブリッドAIシステムの設計パターンとその臨床的意思決定における有効性について分析する。
Boxologyの構造化されたモジュール型アポラチは、ハイブリッドAIシステムの開発と分析において、大きなアドバンテージを提供する。
論文 参考訳(メタデータ) (2024-08-05T12:53:04Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
本研究の目的は,認知診断の現在のモデルについて,機械学習を用いた新たな展開に注目した調査を行うことである。
モデル構造,パラメータ推定アルゴリズム,モデル評価方法,適用例を比較して,認知診断モデルの最近の傾向を概観する。
論文 参考訳(メタデータ) (2024-07-07T18:02:00Z) - A ModelOps-based Framework for Intelligent Medical Knowledge Extraction [20.800484664872148]
本稿では,モデルOpsに基づくインテリジェント医療知識抽出フレームワークを提案する。
モデル選択、トレーニング、評価、最適化のためのローコードシステムを提供する。
我々のフレームワークは、研究者がモデルを開発し、医師のような非AI専門家のモデルアクセスを簡易化するのに役立つ。
論文 参考訳(メタデータ) (2023-10-04T05:35:16Z) - Large Language Models for Biomedical Knowledge Graph Construction:
Information extraction from EMR notes [0.0]
大規模言語モデル(LLM)に基づくエンドツーエンド機械学習ソリューションを提案する。
KG構築プロセスで使用される物質は、疾患、因子、治療、および疾患を経験中に患者と共存する症状である。
提案手法の応用は加齢に伴う黄斑変性に対して実証される。
論文 参考訳(メタデータ) (2023-01-29T15:52:33Z) - A Trustworthy Framework for Medical Image Analysis with Deep Learning [71.48204494889505]
TRUDLMIAは医用画像解析のための信頼できるディープラーニングフレームワークである。
新型コロナウイルス(COVID-19)などの公衆衛生危機への対応に深層学習の活用を推進していくため、研究者や臨床医を支援することが期待されている。
論文 参考訳(メタデータ) (2022-12-06T05:30:22Z) - Patient Aware Active Learning for Fine-Grained OCT Classification [12.89552245538411]
本稿では,アクティブラーニングのサンプル選択プロセスに臨床知見を取り入れたフレームワークを提案する。
医学的に解釈可能な能動学習フレームワークは, OCT分類の性能向上のために, 患者から多彩な疾患の徴候を捉えている。
論文 参考訳(メタデータ) (2022-06-23T05:47:51Z) - User-Driven Research of Medical Note Generation Software [49.85146209418244]
本稿では,医療用ノート生成システム開発における3ラウンドのユーザスタディについて述べる。
参加する臨床医の印象と,システムがどのようにそれらに価値あるものに適合すべきかの視点について論じる。
遠隔医療における3週間のシステムテストについて述べる。
論文 参考訳(メタデータ) (2022-05-05T10:18:06Z) - Multi-Modal Learning Using Physicians Diagnostics for Optical Coherence
Tomography Classification [0.0]
我々は,光学コヒーレンス・トモグラフィーの分析に専門家の診断と知見を取り入れたフレームワークを提案する。
OCTを用いた疾患分類を改善するために,医学診断属性データセットを作成する。
論文 参考訳(メタデータ) (2022-03-20T18:37:20Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
バイナリ・セマンティック・エンベディング(LBSE)の学習方法を提案する。
効率的な埋め込み、分類、検索を行い、組織像の解釈可能なコンピュータ支援診断を提供する。
3つのベンチマークデータセットで実施された実験は、様々なシナリオにおいてLBSEの優位性を検証する。
論文 参考訳(メタデータ) (2020-10-07T08:36:44Z) - Automatic Gesture Recognition in Robot-assisted Surgery with
Reinforcement Learning and Tree Search [63.07088785532908]
共同手術におけるジェスチャー分割と分類のための強化学習と木探索に基づく枠組みを提案する。
我々のフレームワークは,JIGSAWSデータセットのサチューリングタスクにおいて,精度,編集スコア,F1スコアの点で,既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2020-02-20T13:12:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。