論文の概要: Biomedical Entity Linking via Contrastive Context Matching
- arxiv url: http://arxiv.org/abs/2106.07583v1
- Date: Mon, 14 Jun 2021 16:43:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-15 16:10:10.807971
- Title: Biomedical Entity Linking via Contrastive Context Matching
- Title(参考訳): コントラストコンテキストマッチングによるバイオメディカルエンティティリンク
- Authors: Shogo Ujiie, Hayate Iso, Eiji Aramaki
- Abstract要約: バイオメディカルエンティティリンクのための対照的な学習フレームワークであるBioCoMを紹介する。
生のPubMed記事から辞書マッチングによるトレーニングインスタンスを構築する。
最寄りのサーチにより,生物医学の正規化を推論時に予測する。
- 参考スコア(独自算出の注目度): 5.2710726359379265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce BioCoM, a contrastive learning framework for biomedical entity
linking that uses only two resources: a small-sized dictionary and a large
number of raw biomedical articles. Specifically, we build the training
instances from raw PubMed articles by dictionary matching and use them to train
a context-aware entity linking model with contrastive learning. We predict the
normalized biomedical entity at inference time through a nearest-neighbor
search. Results found that BioCoM substantially outperforms state-of-the-art
models, especially in low-resource settings, by effectively using the context
of the entities.
- Abstract(参考訳): バイオコムは,小型辞書と生の生の生物医学記事という2つの資源のみを用いた,生物医学的エンティティリンクのための対比学習フレームワークである。
具体的には、辞書マッチングによって生のPubMed記事からトレーニングインスタンスを構築し、コンテクスト対応エンティティリンクモデルとコントラスト学習のトレーニングに使用する。
最寄りのサーチにより,生物医学の正規化を推論時に予測する。
その結果、BioCoMは、特に低リソース環境において、エンティティのコンテキストを効果的に利用することにより、最先端モデルを大幅に上回ることがわかった。
関連論文リスト
- Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
我々は、軽量なアダプターモジュールを用いて、構造化された生体医学的知識を事前訓練された言語モデルに注入するアプローチを開発した。
バイオメディカル知識システムUMLSと新しいバイオケミカルOntoChemの2つの大きなKGと、PubMedBERTとBioLinkBERTの2つの著名なバイオメディカルPLMを使用している。
計算能力の要件を低く保ちながら,本手法がいくつかの事例において性能改善につながることを示す。
論文 参考訳(メタデータ) (2023-12-21T14:26:57Z) - High-throughput Biomedical Relation Extraction for Semi-Structured Web Articles Empowered by Large Language Models [1.9665865095034865]
関係抽出タスクを大言語モデルのバイナリ分類として定式化する。
メインタイトルをテールエンティティとして指定し、コンテキストに明示的に組み込む。
長い内容はテキストチャンクにスライスされ、埋め込みされ、追加の埋め込みモデルで検索される。
論文 参考訳(メタデータ) (2023-12-13T16:43:41Z) - Biomedical Entity Linking with Triple-aware Pre-Training [7.536753993136013]
我々は,KGから合成したコーパスを用いて,強力な大規模言語モデル(LLM)を事前学習するフレームワークを提案する。
評価では、同義語、記述、関係情報を含む利点を確認できない。
論文 参考訳(メタデータ) (2023-08-28T09:06:28Z) - Exploring the In-context Learning Ability of Large Language Model for
Biomedical Concept Linking [4.8882241537236455]
本研究では,生物医学的概念リンクのための大規模モデルのコンテキスト内学習機能を活用する手法について検討する。
提案手法は2段階のレトリーブ・アンド・ランク・フレームワークを採用する。
BC5CDRの病体正規化では90.%、化学体正規化では94.7%の精度を達成した。
論文 参考訳(メタデータ) (2023-07-03T16:19:50Z) - Biomedical Language Models are Robust to Sub-optimal Tokenization [30.175714262031253]
現代のバイオメディカル言語モデル(LM)は、標準的なドメイン固有のトークン化器を用いて事前訓練されている。
より正確なバイオメディカルトークン化器を用いたバイオメディカルLMの事前トレーニングでは,言語モデルの実体表現品質が向上しないことがわかった。
論文 参考訳(メタデータ) (2023-06-30T13:35:24Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
本論文は,生物医学領域の概念とそれらの関連性を記述するオントロジーであるEBOCAと,それらの関連性を支持するエビデンスを提案する。
DISNETのサブセットから得られるテストデータとテキストからの自動アソシエーション抽出が変換され、実際のシナリオで使用できる知識グラフが作成されるようになった。
論文 参考訳(メタデータ) (2022-08-01T18:47:03Z) - Discovering Drug-Target Interaction Knowledge from Biomedical Literature [107.98712673387031]
人体における薬物と標的(DTI)の相互作用は、生物医学や応用において重要な役割を担っている。
毎年何百万もの論文がバイオメディカル分野で出回っているので、文学からDTIの知識を自動的に発見することは、業界にとって急激な需要となっている。
生成的アプローチを用いて,この課題に対する最初のエンドツーエンドソリューションについて検討する。
我々はDTI三重項をシーケンスとみなし、Transformerベースのモデルを使ってエンティティや関係の詳細なアノテーションを使わずに直接生成する。
論文 参考訳(メタデータ) (2021-09-27T17:00:14Z) - CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark [51.38557174322772]
中国初のバイオメディカル言語理解評価ベンチマークを提示する。
名前付きエンティティ認識、情報抽出、臨床診断正規化、単文/文対分類を含む自然言語理解タスクのコレクションである。
本研究は,現在の11種類の中国モデルによる実験結果について報告し,その実験結果から,現在最先端のニューラルモデルがヒトの天井よりもはるかに悪い性能を示すことが示された。
論文 参考訳(メタデータ) (2021-06-15T12:25:30Z) - Fast and Effective Biomedical Entity Linking Using a Dual Encoder [48.86736921025866]
文書中の複数の言及を1ショットで解決するBERTベースのデュアルエンコーダモデルを提案する。
本稿では,提案モデルが既存のBERTモデルよりも複数倍高速であり,バイオメディカルエンティティリンクの精度に競争力があることを示す。
論文 参考訳(メタデータ) (2021-03-08T19:32:28Z) - A Lightweight Neural Model for Biomedical Entity Linking [1.8047694351309205]
本論文では,生物医学的実体連携のための軽量ニューラル手法を提案する。
本手法では,アライメント層とアライメント機構を用いて参照とエンティティ名の違いをキャプチャする。
私達のモデルは標準的な評価のベンチマークの前の仕事と競争です。
論文 参考訳(メタデータ) (2020-12-16T10:34:37Z) - Domain-Specific Language Model Pretraining for Biomedical Natural
Language Processing [73.37262264915739]
バイオメディシンなどのラベルなしテキストの少ないドメインでは、スクラッチから言語モデルを事前学習することで、かなりの利益が得られることを示す。
実験の結果, ドメイン固有のプレトレーニングは, 幅広い生物医学的NLPタスクの基盤となることが明らかとなった。
論文 参考訳(メタデータ) (2020-07-31T00:04:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。