Population-coding and Dynamic-neurons improved Spiking Actor Network for
Reinforcement Learning
- URL: http://arxiv.org/abs/2106.07854v1
- Date: Tue, 15 Jun 2021 03:14:41 GMT
- Title: Population-coding and Dynamic-neurons improved Spiking Actor Network for
Reinforcement Learning
- Authors: Duzhen Zhang, Tielin Zhang, Shuncheng Jia, Xiang Cheng and Bo Xu
- Abstract summary: Spiking Neural Network (SNN) contains a diverse population of spiking neurons, making it naturally powerful on state representation with spatial and temporal information.
We propose a Population-coding and Dynamic-neurons improved Spiking Actor Network (PDSAN) for efficient state representation from two different scales.
Our TD3-PDSAN model achieves better performance than state-of-the-art models on four OpenAI gym benchmark tasks.
- Score: 10.957578424267757
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: With the Deep Neural Networks (DNNs) as a powerful function approximator,
Deep Reinforcement Learning (DRL) has been excellently demonstrated on robotic
control tasks. Compared to DNNs with vanilla artificial neurons, the
biologically plausible Spiking Neural Network (SNN) contains a diverse
population of spiking neurons, making it naturally powerful on state
representation with spatial and temporal information. Based on a hybrid
learning framework, where a spike actor-network infers actions from states and
a deep critic network evaluates the actor, we propose a Population-coding and
Dynamic-neurons improved Spiking Actor Network (PDSAN) for efficient state
representation from two different scales: input coding and neuronal coding. For
input coding, we apply population coding with dynamically receptive fields to
directly encode each input state component. For neuronal coding, we propose
different types of dynamic-neurons (containing 1st-order and 2nd-order neuronal
dynamics) to describe much more complex neuronal dynamics. Finally, the PDSAN
is trained in conjunction with deep critic networks using the Twin Delayed Deep
Deterministic policy gradient algorithm (TD3-PDSAN). Extensive experimental
results show that our TD3-PDSAN model achieves better performance than
state-of-the-art models on four OpenAI gym benchmark tasks. It is an important
attempt to improve RL with SNN towards the effective computation satisfying
biological plausibility.
Related papers
- Channel-wise Parallelizable Spiking Neuron with Multiplication-free Dynamics and Large Temporal Receptive Fields [32.349167886062105]
Spiking Neural Networks (SNNs) are distinguished from Artificial Neural Networks (ANNs) for their sophisticated neuronal dynamics and sparse binary activations (spikes) inspired by the biological neural system.
Traditional neuron models use iterative step-by-step dynamics, resulting in serial computation and slow training speed of SNNs.
Recent parallelizable spiking neuron models have been proposed to fully utilize the massive parallel computing ability of graphics processing units to accelerate the training of SNNs.
arXiv Detail & Related papers (2025-01-24T13:44:08Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
We focus on the task where the agent needs to learn multi-dimensional deterministic policies to control.
Most existing spike-based RL methods take the firing rate as the output of SNNs, and convert it to represent continuous action space (i.e., the deterministic policy) through a fully-connected layer.
To develop a fully spiking actor network without any floating-point matrix operations, we draw inspiration from the non-spiking interneurons found in insects.
arXiv Detail & Related papers (2024-01-09T07:31:34Z) - Co-learning synaptic delays, weights and adaptation in spiking neural
networks [0.0]
Spiking neural networks (SNN) distinguish themselves from artificial neural networks (ANN) because of their inherent temporal processing and spike-based computations.
We show that data processing with spiking neurons can be enhanced by co-learning the connection weights with two other biologically inspired neuronal features.
arXiv Detail & Related papers (2023-09-12T09:13:26Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Complex Dynamic Neurons Improved Spiking Transformer Network for
Efficient Automatic Speech Recognition [8.998797644039064]
The spiking neural network (SNN) using leaky-integrated-and-fire (LIF) neurons has been commonly used in automatic speech recognition (ASR) tasks.
Here we introduce four types of neuronal dynamics to post-process the sequential patterns generated from the spiking transformer.
We found that the DyTr-SNN could handle the non-toy automatic speech recognition task well, representing a lower phoneme error rate, lower computational cost, and higher robustness.
arXiv Detail & Related papers (2023-02-02T16:20:27Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Deep Reinforcement Learning with Spiking Q-learning [51.386945803485084]
spiking neural networks (SNNs) are expected to realize artificial intelligence (AI) with less energy consumption.
It provides a promising energy-efficient way for realistic control tasks by combining SNNs with deep reinforcement learning (RL)
arXiv Detail & Related papers (2022-01-21T16:42:11Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
We show how a novel type of adaptive spiking recurrent neural network (SRNN) is able to achieve state-of-the-art performance.
We calculate a $>$100x energy improvement for our SRNNs over classical RNNs on the harder tasks.
arXiv Detail & Related papers (2020-05-24T01:04:53Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.