Co-learning synaptic delays, weights and adaptation in spiking neural
networks
- URL: http://arxiv.org/abs/2311.16112v1
- Date: Tue, 12 Sep 2023 09:13:26 GMT
- Title: Co-learning synaptic delays, weights and adaptation in spiking neural
networks
- Authors: Lucas Deckers, Laurens Van Damme, Ing Jyh Tsang, Werner Van Leekwijck
and Steven Latr\'e
- Abstract summary: Spiking neural networks (SNN) distinguish themselves from artificial neural networks (ANN) because of their inherent temporal processing and spike-based computations.
We show that data processing with spiking neurons can be enhanced by co-learning the connection weights with two other biologically inspired neuronal features.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking neural networks (SNN) distinguish themselves from artificial neural
networks (ANN) because of their inherent temporal processing and spike-based
computations, enabling a power-efficient implementation in neuromorphic
hardware. In this paper, we demonstrate that data processing with spiking
neurons can be enhanced by co-learning the connection weights with two other
biologically inspired neuronal features: 1) a set of parameters describing
neuronal adaptation processes and 2) synaptic propagation delays. The former
allows the spiking neuron to learn how to specifically react to incoming spikes
based on its past. The trained adaptation parameters result in neuronal
heterogeneity, which is found in the brain and also leads to a greater variety
in available spike patterns. The latter enables to learn to explicitly
correlate patterns that are temporally distanced. Synaptic delays reflect the
time an action potential requires to travel from one neuron to another. We show
that each of the co-learned features separately leads to an improvement over
the baseline SNN and that the combination of both leads to state-of-the-art SNN
results on all speech recognition datasets investigated with a simple 2-hidden
layer feed-forward network. Our SNN outperforms the ANN on the neuromorpic
datasets (Spiking Heidelberg Digits and Spiking Speech Commands), even with
fewer trainable parameters. On the 35-class Google Speech Commands dataset, our
SNN also outperforms a GRU of similar size. Our work presents brain-inspired
improvements to SNN that enable them to excel over an equivalent ANN of similar
size on tasks with rich temporal dynamics.
Related papers
- Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning [91.29876772547348]
Spiking neural networks (SNNs) are investigated as biologically inspired models of neural computation.
This paper reveals that SNNs, when amalgamated with synaptic delay and temporal coding, are proficient in executing (knowledge) graph reasoning.
arXiv Detail & Related papers (2024-05-27T05:53:30Z) - Curriculum Design Helps Spiking Neural Networks to Classify Time Series [16.402675046686834]
Spiking Neural Networks (SNNs) have a greater potential for modeling time series data than Artificial Neural Networks (ANNs)
In this work, enlighten by brain-inspired science, we find that, not only the structure but also the learning process should be human-like.
arXiv Detail & Related papers (2023-12-26T02:04:53Z) - Deep Pulse-Coupled Neural Networks [31.65350290424234]
Neural Networks (SNNs) capture the information processing mechanism of the brain by taking advantage of neurons.
In this work, we leverage a more biologically plausible neural model with complex dynamics, i.e., a pulse-coupled neural network (PCNN)
We construct deep pulse-coupled neural networks (DPCNNs) by replacing commonly used LIF neurons in SNNs with PCNN neurons.
arXiv Detail & Related papers (2023-12-24T08:26:00Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Complex Dynamic Neurons Improved Spiking Transformer Network for
Efficient Automatic Speech Recognition [8.998797644039064]
The spiking neural network (SNN) using leaky-integrated-and-fire (LIF) neurons has been commonly used in automatic speech recognition (ASR) tasks.
Here we introduce four types of neuronal dynamics to post-process the sequential patterns generated from the spiking transformer.
We found that the DyTr-SNN could handle the non-toy automatic speech recognition task well, representing a lower phoneme error rate, lower computational cost, and higher robustness.
arXiv Detail & Related papers (2023-02-02T16:20:27Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
Bio-inspired neural networks can potentially lead to greater computational efficiency on event-driven hardware.
We propose a novel Event-based Video reconstruction framework based on a fully Spiking Neural Network (EVSNN)
We find that the spiking neurons have the potential to store useful temporal information (memory) to complete such time-dependent tasks.
arXiv Detail & Related papers (2022-01-25T02:05:20Z) - Spiking Neural Networks with Improved Inherent Recurrence Dynamics for
Sequential Learning [6.417011237981518]
Spiking neural networks (SNNs) with leaky integrate and fire (LIF) neurons can be operated in an event-driven manner.
We show that SNNs can be trained for sequential tasks and propose modifications to a network of LIF neurons.
We then develop a training scheme to train the proposed SNNs with improved inherent recurrence dynamics.
arXiv Detail & Related papers (2021-09-04T17:13:28Z) - BackEISNN: A Deep Spiking Neural Network with Adaptive Self-Feedback and
Balanced Excitatory-Inhibitory Neurons [8.956708722109415]
Spiking neural networks (SNNs) transmit information through discrete spikes, which performs well in processing spatial-temporal information.
We propose a deep spiking neural network with adaptive self-feedback and balanced excitatory and inhibitory neurons (BackEISNN)
For the MNIST, FashionMNIST, and N-MNIST datasets, our model has achieved state-of-the-art performance.
arXiv Detail & Related papers (2021-05-27T08:38:31Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.