論文の概要: Contextualizing Multiple Tasks via Learning to Decompose
- arxiv url: http://arxiv.org/abs/2106.08112v1
- Date: Tue, 15 Jun 2021 13:10:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-16 15:24:51.542484
- Title: Contextualizing Multiple Tasks via Learning to Decompose
- Title(参考訳): 分解学習による複数タスクのコンテキスト化
- Authors: Han-Jia Ye, Da-Wei Zhou, Lanqing Hong, Zhenguo Li, Xiu-Shen Wei,
De-Chuan Zhan
- Abstract要約: 1つのインスタンスは複数のポートレートを持ち、異なるコンテキストで他のインスタンスとの多様な関係を明らかにすることができる。
両事例にネットワーク分割学習(LeadNet)を提案する。
LeadNetは、オブジェクト内とオブジェクト間のリッチなセマンティクスを組み込むことで、適切な概念を自動的に選択することを学ぶ。
- 参考スコア(独自算出の注目度): 58.22808924690355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One single instance could possess multiple portraits and reveal diverse
relationships with others according to different contexts. Those ambiguities
increase the difficulty of learning a generalizable model when there exists one
concept or mixed concepts in a task. We propose a general approach Learning to
Decompose Network (LeadNet) for both two cases, which contextualizes a model
through meta-learning multiple maps for concepts discovery -- the
representations of instances are decomposed and adapted conditioned on the
contexts. Through taking a holistic view over multiple latent components over
instances in a sampled pseudo task, LeadNet learns to automatically select the
right concept via incorporating those rich semantics inside and between
objects. LeadNet demonstrates its superiority in various applications,
including exploring multiple views of confusing tasks, out-of-distribution
recognition, and few-shot image classification.
- Abstract(参考訳): 1つの例は複数の肖像を持ち、異なる文脈で他の人物との多様な関係を明らかにすることができる。
これらの曖昧さは、タスクの中にひとつの概念や混合概念が存在する場合、一般化可能なモデルを学ぶのが困難になる。
本稿では,概念発見のためのメタラーニング複数マップを通じてモデルを文脈化し,そのコンテキストに基づいてインスタンスの表現を分解し,適応する2つのケースに対する学習ネットワーク(LeadNet)の一般的なアプローチを提案する。
サンプルされた疑似タスクのインスタンス上の複数の潜在コンポーネントに対する包括的なビューを取ることで、leadnetはオブジェクト内とオブジェクト間のリッチなセマンティクスを組み込むことで、正しい概念を自動的に選択することを学びます。
leadnetは様々なアプリケーションにおいてその優位性を示しており、混乱したタスクの複数のビューの探索、配布外認識、少数ショットの画像分類などがある。
関連論文リスト
- Preserving Modality Structure Improves Multi-Modal Learning [64.10085674834252]
大規模マルチモーダルデータセットによる自己教師付き学習は、人間のアノテーションに頼ることなく、意味的に意味のある埋め込みを学ぶことができる。
これらの手法は、モダリティ固有の埋め込みに存在する意味構造を無視して、ドメイン外のデータをうまく一般化するのに苦労することが多い。
共同埋め込み空間におけるモダリティ特異的な関係を保ち, 一般化性を向上させるためのセマンティック・構造保存整合性アプローチを提案する。
論文 参考訳(メタデータ) (2023-08-24T20:46:48Z) - MIANet: Aggregating Unbiased Instance and General Information for
Few-Shot Semantic Segmentation [6.053853367809978]
既存の少数ショットセグメンテーション手法はメタラーニング戦略に基づいて,サポートセットからインスタンス知識を抽出する。
本稿では,多情報集約ネットワーク(MIANet)を提案する。
PASCAL-5iとCOCO-20iの実験により、MIANetは優れた性能を示し、新しい最先端技術を確立した。
論文 参考訳(メタデータ) (2023-05-23T09:36:27Z) - Cooperative Self-Training for Multi-Target Adaptive Semantic
Segmentation [26.79776306494929]
複数のドメイン固有分類器間の協調を誘導するために擬似ラベルを用いた自己学習戦略を提案する。
我々は、自己学習の不可欠な部分を形成する画像ビューを生成する効率的な方法として、特徴スタイリングを採用している。
論文 参考訳(メタデータ) (2022-10-04T13:03:17Z) - CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification [11.894289991529496]
少数のラベル付きサンプルを与えられた未確認のクラスに適応できるモデルを学ぶことを目的としている。
最近のアプローチでは、特徴抽出器を事前訓練し、その後、エピソードなメタラーニングのための微調整を行う。
本研究は, 複数ショットの分類において, 横断的および再重み付き識別機能を実現するための戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T06:14:51Z) - Learning Prototype-oriented Set Representations for Meta-Learning [85.19407183975802]
集合構造データから学ぶことは、近年注目を集めている根本的な問題である。
本稿では,既存の要約ネットワークを改善するための新しい最適輸送方式を提案する。
さらに、少数ショット分類と暗黙的メタ生成モデリングの事例にインスタンス化する。
論文 参考訳(メタデータ) (2021-10-18T09:49:05Z) - Improving Task Adaptation for Cross-domain Few-shot Learning [41.821234589075445]
クロスドメインの少ショット分類は、ラベル付きサンプルがほとんどない未確認のクラスやドメインから分類器を学ぶことを目的としている。
残余接続を有する畳み込み層に付着したパラメトリックアダプタが最良であることを示す。
論文 参考訳(メタデータ) (2021-07-01T10:47:06Z) - Multimodal Clustering Networks for Self-supervised Learning from
Unlabeled Videos [69.61522804742427]
本稿では,共通のマルチモーダル埋め込み空間を学習する自己監督型トレーニングフレームワークを提案する。
インスタンスレベルのコントラスト学習の概念をマルチモーダルクラスタリングステップで拡張し,モダリティ間の意味的類似性を捉える。
結果として得られる埋め込みスペースは、見えないデータセットや異なるドメインからでも、すべてのモダリティにわたるサンプルの検索を可能にする。
論文 参考訳(メタデータ) (2021-04-26T15:55:01Z) - Meta Learning for Few-Shot One-class Classification [0.0]
メタ学習問題として,一級分類における意味のある特徴の学習を定式化する。
これらの表現を学習するには、類似したタスクからのマルチクラスデータのみが必要である。
数ショットの分類データセットを、数ショットの1クラスの分類シナリオに適応させることで、我々のアプローチを検証する。
論文 参考訳(メタデータ) (2020-09-11T11:35:28Z) - Learning to Combine: Knowledge Aggregation for Multi-Source Domain
Adaptation [56.694330303488435]
マルチソースドメイン適応(LtC-MSDA)フレームワークを併用する学習法を提案する。
簡単に言うと、知識グラフは様々なドメインのプロトタイプ上に構築され、セマンティックに隣接した表現間の情報伝達を実現する。
我々のアプローチは、既存の手法よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2020-07-17T07:52:44Z) - Meta-Baseline: Exploring Simple Meta-Learning for Few-Shot Learning [79.25478727351604]
評価基準に基づいて,分類済みモデル全体に対するメタラーニング(メタラーニング)を提案する。
我々は,この単純な手法が標準ベンチマークにおける最先端手法との競合性能を達成するのを観察する。
論文 参考訳(メタデータ) (2020-03-09T20:06:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。