論文の概要: Canonical-Correlation-Based Fast Feature Selection
- arxiv url: http://arxiv.org/abs/2106.08247v1
- Date: Tue, 15 Jun 2021 15:55:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-16 15:26:58.196787
- Title: Canonical-Correlation-Based Fast Feature Selection
- Title(参考訳): 標準相関に基づく高速特徴選択
- Authors: Sikai Zhang, Tingna Wang, Keith Worden, Elizabeth J. Cross
- Abstract要約: 特徴ランキング基準として2乗正準相関係数の和を用いる。
提案手法は,グリージー検索におけるランキング基準の計算速度を向上する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper proposes a canonical-correlation-based filter method for feature
selection. The sum of squared canonical correlation coefficients is adopted as
the feature ranking criterion. The proposed method boosts the computational
speed of the ranking criterion in greedy search. The supporting theorems
developed for the feature selection method are fundamental to the understanding
of the canonical correlation analysis. In empirical studies, a synthetic
dataset is used to demonstrate the speed advantage of the proposed method, and
eight real datasets are applied to show the effectiveness of the proposed
feature ranking criterion in both classification and regression. The results
show that the proposed method is considerably faster than the definition-based
method, and the proposed ranking criterion is competitive compared with the
seven mutual-information-based criteria.
- Abstract(参考訳): 本稿では,特徴選択のための標準相関に基づくフィルタ手法を提案する。
2乗正準相関係数の和を特徴ランキング基準として採用する。
提案手法は,グリージー検索におけるランキング基準の計算速度を向上する。
特徴選択法のために開発された支持定理は、正準相関解析の理解の基礎となる。
実験研究では,提案手法の高速化を示すために合成データセットを用い,分類と回帰の両方において,提案する特徴ランキング基準の有効性を示すために8つの実データセットを適用した。
その結果,提案手法は定義に基づく手法よりもかなり高速であり,提案手法のランク付け基準は7つの相互情報に基づく基準と競合することがわかった。
関連論文リスト
- Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
本稿では,各データインスタンスのリソースを動的に割り当てることで,推論を高速化するスイッチブルな決定を提案する。
提案手法は, 同一の精度を維持しながら, 推論時のコスト低減に有効である。
論文 参考訳(メタデータ) (2024-05-07T17:44:54Z) - Multi-objective Binary Coordinate Search for Feature Selection [0.24578723416255746]
大規模特徴選択問題の解法として,二元多目的座標探索(MOCS)アルゴリズムを提案する。
その結果,実世界の5つの大規模データセットにおいて,NSGA-IIよりも提案手法が優れていることが示唆された。
論文 参考訳(メタデータ) (2024-02-20T00:50:26Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
低ランクマルコフ決定プロセスは、関数近似を持つRLに対して単純だが表現力のあるフレームワークを提供する。
既存のアルゴリズムは、(1)計算的に抽出可能であるか、または(2)制限的な統計的仮定に依存している。
提案手法は,低ランクMPPの探索のための最初の実証可能なサンプル効率アルゴリズムである。
論文 参考訳(メタデータ) (2023-07-08T15:41:48Z) - Forward-Forward Algorithm for Hyperspectral Image Classification: A
Preliminary Study [0.0]
フォワードフォワードアルゴリズム(FFA)は、ネットワークパラメータを最適化するために局所良性関数を計算する。
本研究では,FFAのハイパースペクトル画像分類への応用について検討した。
論文 参考訳(メタデータ) (2023-07-01T05:39:28Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Fair Feature Subset Selection using Multiobjective Genetic Algorithm [0.0]
フェアネスと精度を両立させる特徴部分選択手法を提案する。
モデル性能の指標としてF1-Scoreを用いる。
最も一般的なフェアネスベンチマークデータセットの実験では、進化的アルゴリズムを用いることで、フェアネスと精度のトレードオフを効果的に探索できることが示されている。
論文 参考訳(メタデータ) (2022-04-30T22:51:19Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Algorithmic Stability and Generalization of an Unsupervised Feature
Selection Algorithm [20.564573628659918]
アルゴリズム安定性は、入力サンプルの摂動に対する感度に関するアルゴリズムの重要な特徴である。
本稿では,この安定性を保証可能な保証で実現した,革新的な教師なし特徴選択アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-19T12:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。