論文の概要: Canonical-Correlation-Based Fast Feature Selection for Structural Health Monitoring
- arxiv url: http://arxiv.org/abs/2106.08247v2
- Date: Mon, 9 Sep 2024 07:11:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 00:23:12.387772
- Title: Canonical-Correlation-Based Fast Feature Selection for Structural Health Monitoring
- Title(参考訳): 構造的健康モニタリングのためのカノニカル相関に基づく高速特徴選択
- Authors: Sikai Zhang, Tingna Wang, Keith Worden, Limin Sun, Elizabeth J. Cross,
- Abstract要約: 本稿では,観測された特徴と欲求探索における対象変数の2乗正準相関係数の和を効率的に計算し,高速な特徴選択アルゴリズムを提案する。
提案アルゴリズムは, 計算速度, 一般分類, 回帰タスク, 損傷に敏感な特徴選択タスクの両面において, その優位性を示すために, 合成データセットと実データセットの両方に適用される。
- 参考スコア(独自算出の注目度): 4.533223834527272
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Feature selection refers to the process of selecting useful features for machine learning tasks, and it is also a key step for structural health monitoring (SHM). This paper proposes a fast feature selection algorithm by efficiently computing the sum of squared canonical correlation coefficients between monitored features and target variables of interest in greedy search. The proposed algorithm is applied to both synthetic and real datasets to illustrate its advantages in terms of computational speed, general classification and regression tasks, as well as damage-sensitive feature selection tasks. Furthermore, the performance of the proposed algorithm is evaluated under varying environmental conditions and on an edge computing device to investigate its applicability in real-world SHM scenarios. The results show that the proposed algorithm can successfully select useful features with extraordinarily fast computational speed, which implies that the proposed algorithm has great potential where features need to be selected and updated online frequently, or where devices have limited computing capability.
- Abstract(参考訳): 特徴選択とは、機械学習タスクに有用な機能を選択するプロセスであり、構造的健康モニタリング(SHM)の重要なステップでもある。
本稿では,観測された特徴と欲求探索における対象変数の2乗正準相関係数の和を効率的に計算し,高速な特徴選択アルゴリズムを提案する。
提案アルゴリズムは, 計算速度, 一般分類, 回帰タスク, 損傷に敏感な特徴選択タスクの両面において, その優位性を示すために, 合成データセットと実データセットの両方に適用される。
さらに,提案アルゴリズムの性能を環境条件やエッジ・コンピューティング・デバイス上で評価し,実世界のSHMシナリオへの適用性について検討した。
この結果から,提案アルゴリズムは極めて高速な計算速度で有用な特徴を選択できることが示唆された。
関連論文リスト
- Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
本稿では,各データインスタンスのリソースを動的に割り当てることで,推論を高速化するスイッチブルな決定を提案する。
提案手法は, 同一の精度を維持しながら, 推論時のコスト低減に有効である。
論文 参考訳(メタデータ) (2024-05-07T17:44:54Z) - Multi-objective Binary Coordinate Search for Feature Selection [0.24578723416255746]
大規模特徴選択問題の解法として,二元多目的座標探索(MOCS)アルゴリズムを提案する。
その結果,実世界の5つの大規模データセットにおいて,NSGA-IIよりも提案手法が優れていることが示唆された。
論文 参考訳(メタデータ) (2024-02-20T00:50:26Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
低ランクマルコフ決定プロセスは、関数近似を持つRLに対して単純だが表現力のあるフレームワークを提供する。
既存のアルゴリズムは、(1)計算的に抽出可能であるか、または(2)制限的な統計的仮定に依存している。
提案手法は,低ランクMPPの探索のための最初の実証可能なサンプル効率アルゴリズムである。
論文 参考訳(メタデータ) (2023-07-08T15:41:48Z) - Forward-Forward Algorithm for Hyperspectral Image Classification: A
Preliminary Study [0.0]
フォワードフォワードアルゴリズム(FFA)は、ネットワークパラメータを最適化するために局所良性関数を計算する。
本研究では,FFAのハイパースペクトル画像分類への応用について検討した。
論文 参考訳(メタデータ) (2023-07-01T05:39:28Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
既存の強化学習アルゴリズムは、計算的難易度、強い統計的仮定、最適なサンプルの複雑さに悩まされている。
所望の精度レベルに対して、レート最適サンプル複雑性を実現するための、最初の計算効率の良いアルゴリズムを提供する。
我々のアルゴリズムMusIKは、多段階の逆運動学に基づく表現学習と体系的な探索を組み合わせる。
論文 参考訳(メタデータ) (2023-04-12T14:51:47Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Fair Feature Subset Selection using Multiobjective Genetic Algorithm [0.0]
フェアネスと精度を両立させる特徴部分選択手法を提案する。
モデル性能の指標としてF1-Scoreを用いる。
最も一般的なフェアネスベンチマークデータセットの実験では、進化的アルゴリズムを用いることで、フェアネスと精度のトレードオフを効果的に探索できることが示されている。
論文 参考訳(メタデータ) (2022-04-30T22:51:19Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Algorithmic Stability and Generalization of an Unsupervised Feature
Selection Algorithm [20.564573628659918]
アルゴリズム安定性は、入力サンプルの摂動に対する感度に関するアルゴリズムの重要な特徴である。
本稿では,この安定性を保証可能な保証で実現した,革新的な教師なし特徴選択アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-19T12:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。