Self-Supervised Learning with Kernel Dependence Maximization
- URL: http://arxiv.org/abs/2106.08320v1
- Date: Tue, 15 Jun 2021 17:51:16 GMT
- Title: Self-Supervised Learning with Kernel Dependence Maximization
- Authors: Yazhe Li and Roman Pogodin and Danica J. Sutherland and Arthur Gretton
- Abstract summary: We propose Self-Supervised Learning with the Hilbert-Schmidt Independence Criterion (SSL-HSIC)
SSL-HSIC maximizes dependence between representations of transformed versions of an image and the image identity.
This self-supervised learning framework yields a new understanding of InfoNCE, a variational lower bound on the mutual information (MI) between different transformations.
- Score: 23.618292038419654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We approach self-supervised learning of image representations from a
statistical dependence perspective, proposing Self-Supervised Learning with the
Hilbert-Schmidt Independence Criterion (SSL-HSIC). SSL-HSIC maximizes
dependence between representations of transformed versions of an image and the
image identity, while minimizing the kernelized variance of those features.
This self-supervised learning framework yields a new understanding of InfoNCE,
a variational lower bound on the mutual information (MI) between different
transformations. While the MI itself is known to have pathologies which can
result in meaningless representations being learned, its bound is much better
behaved: we show that it implicitly approximates SSL-HSIC (with a slightly
different regularizer). Our approach also gives us insight into BYOL, since
SSL-HSIC similarly learns local neighborhoods of samples. SSL-HSIC allows us to
directly optimize statistical dependence in time linear in the batch size,
without restrictive data assumptions or indirect mutual information estimators.
Trained with or without a target network, SSL-HSIC matches the current
state-of-the-art for standard linear evaluation on ImageNet, semi-supervised
learning and transfer to other classification and vision tasks such as semantic
segmentation, depth estimation and object recognition.
Related papers
- A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification [51.35500308126506]
Self-supervised learning (SSL) is a machine learning approach where the data itself provides supervision, eliminating the need for external labels.
We study how classification-based evaluation protocols for SSL correlate and how well they predict downstream performance on different dataset types.
arXiv Detail & Related papers (2024-07-16T23:17:36Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
In self-supervised learning (SSL), representations are learned via an auxiliary task without annotated labels.
We present a generative latent variable model for self-supervised learning.
We show that several families of discriminative SSL, including contrastive methods, induce a comparable distribution over representations.
arXiv Detail & Related papers (2024-02-02T13:31:17Z) - Augmentation-aware Self-supervised Learning with Conditioned Projector [6.720605329045581]
Self-supervised learning (SSL) is a powerful technique for learning from unlabeled data.
We propose to foster sensitivity to characteristics in the representation space by modifying the projector network.
Our approach, coined Conditional Augmentation-aware Self-supervised Learning (CASSLE), is directly applicable to typical joint-embedding SSL methods.
arXiv Detail & Related papers (2023-05-31T12:24:06Z) - Reverse Engineering Self-Supervised Learning [17.720366509919167]
Self-supervised learning (SSL) is a powerful tool in machine learning.
This paper presents an in-depth empirical analysis of SSL-trained representations.
arXiv Detail & Related papers (2023-05-24T23:15:28Z) - Explaining, Analyzing, and Probing Representations of Self-Supervised
Learning Models for Sensor-based Human Activity Recognition [2.2082422928825136]
Self-supervised learning (SSL) frameworks have been extensively applied to sensor-based Human Activity Recognition (HAR)
In this paper, we aim to analyze deep representations of two recent SSL frameworks, namely SimCLR and VICReg.
arXiv Detail & Related papers (2023-04-14T07:53:59Z) - Benchmark for Uncertainty & Robustness in Self-Supervised Learning [0.0]
Self-Supervised Learning is crucial for real-world applications, especially in data-hungry domains such as healthcare and self-driving cars.
In this paper, we explore variants of SSL methods, including Jigsaw Puzzles, Context, Rotation, Geometric Transformations Prediction for vision, as well as BERT and GPT for language tasks.
Our goal is to create a benchmark with outputs from experiments, providing a starting point for new SSL methods in Reliable Machine Learning.
arXiv Detail & Related papers (2022-12-23T15:46:23Z) - Weak Augmentation Guided Relational Self-Supervised Learning [80.0680103295137]
We introduce a novel relational self-supervised learning (ReSSL) framework that learns representations by modeling the relationship between different instances.
Our proposed method employs sharpened distribution of pairwise similarities among different instances as textitrelation metric.
Experimental results show that our proposed ReSSL substantially outperforms the state-of-the-art methods across different network architectures.
arXiv Detail & Related papers (2022-03-16T16:14:19Z) - UniVIP: A Unified Framework for Self-Supervised Visual Pre-training [50.87603616476038]
We propose a novel self-supervised framework to learn versatile visual representations on either single-centric-object or non-iconic dataset.
Massive experiments show that UniVIP pre-trained on non-iconic COCO achieves state-of-the-art transfer performance.
Our method can also exploit single-centric-object dataset such as ImageNet and outperforms BYOL by 2.5% with the same pre-training epochs in linear probing.
arXiv Detail & Related papers (2022-03-14T10:04:04Z) - ReSSL: Relational Self-Supervised Learning with Weak Augmentation [68.47096022526927]
Self-supervised learning has achieved great success in learning visual representations without data annotations.
We introduce a novel relational SSL paradigm that learns representations by modeling the relationship between different instances.
Our proposed ReSSL significantly outperforms the previous state-of-the-art algorithms in terms of both performance and training efficiency.
arXiv Detail & Related papers (2021-07-20T06:53:07Z) - Self-Supervised Learning of Graph Neural Networks: A Unified Review [50.71341657322391]
Self-supervised learning is emerging as a new paradigm for making use of large amounts of unlabeled samples.
We provide a unified review of different ways of training graph neural networks (GNNs) using SSL.
Our treatment of SSL methods for GNNs sheds light on the similarities and differences of various methods, setting the stage for developing new methods and algorithms.
arXiv Detail & Related papers (2021-02-22T03:43:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.