SEEN: Sharpening Explanations for Graph Neural Networks using
Explanations from Neighborhoods
- URL: http://arxiv.org/abs/2106.08532v1
- Date: Wed, 16 Jun 2021 03:04:46 GMT
- Title: SEEN: Sharpening Explanations for Graph Neural Networks using
Explanations from Neighborhoods
- Authors: Hyeoncheol Cho, Youngrock Oh, Eunjoo Jeon
- Abstract summary: We propose a method to improve the explanation quality of node classification tasks through aggregation of auxiliary explanations.
Applying SEEN does not require modification of a graph and can be used with diverse explainability techniques.
Experiments on matching motif-participating nodes from a given graph show great improvement in explanation accuracy of up to 12.71%.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explaining the foundations for predictions obtained from graph neural
networks (GNNs) is critical for credible use of GNN models for real-world
problems. Owing to the rapid growth of GNN applications, recent progress in
explaining predictions from GNNs, such as sensitivity analysis, perturbation
methods, and attribution methods, showed great opportunities and possibilities
for explaining GNN predictions. In this study, we propose a method to improve
the explanation quality of node classification tasks that can be applied in a
post hoc manner through aggregation of auxiliary explanations from important
neighboring nodes, named SEEN. Applying SEEN does not require modification of a
graph and can be used with diverse explainability techniques due to its
independent mechanism. Experiments on matching motif-participating nodes from a
given graph show great improvement in explanation accuracy of up to 12.71% and
demonstrate the correlation between the auxiliary explanations and the enhanced
explanation accuracy through leveraging their contributions. SEEN provides a
simple but effective method to enhance the explanation quality of GNN model
outputs, and this method is applicable in combination with most explainability
techniques.
Related papers
- ACGAN-GNNExplainer: Auxiliary Conditional Generative Explainer for Graph
Neural Networks [7.077341403454516]
Graph neural networks (GNNs) have proven their efficacy in a variety of real-world applications, but their underlying mechanisms remain a mystery.
To address this challenge and enable reliable decision-making, many GNN explainers have been proposed in recent years.
We introduce Auxiliary Generative Adrative Network (ACGAN) into the field of GNN explanation and propose a new GNN explainer dubbedemphACGANGNNExplainer.
arXiv Detail & Related papers (2023-09-29T01:20:28Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Structural Explanations for Graph Neural Networks using HSIC [21.929646888419914]
Graph neural networks (GNNs) are a type of neural model that tackle graphical tasks in an end-to-end manner.
The complicated dynamics of GNNs make it difficult to understand which parts of the graph features contribute more strongly to the predictions.
In this study, a flexible model agnostic explanation method is proposed to detect significant structures in graphs.
arXiv Detail & Related papers (2023-02-04T09:46:47Z) - GANExplainer: GAN-based Graph Neural Networks Explainer [5.641321839562139]
It is critical to explain why graph neural network (GNN) makes particular predictions for them to be believed in many applications.
We propose GANExplainer, based on Generative Adversarial Network (GAN) architecture.
GANExplainer improves explanation accuracy by up to 35% compared to its alternatives.
arXiv Detail & Related papers (2022-12-30T23:11:24Z) - Task-Agnostic Graph Explanations [50.17442349253348]
Graph Neural Networks (GNNs) have emerged as powerful tools to encode graph structured data.
Existing learning-based GNN explanation approaches are task-specific in training.
We propose a Task-Agnostic GNN Explainer (TAGE) trained under self-supervision with no knowledge of downstream tasks.
arXiv Detail & Related papers (2022-02-16T21:11:47Z) - Edge-Level Explanations for Graph Neural Networks by Extending
Explainability Methods for Convolutional Neural Networks [33.20913249848369]
Graph Neural Networks (GNNs) are deep learning models that take graph data as inputs, and they are applied to various tasks such as traffic prediction and molecular property prediction.
We extend explainability methods for CNNs, such as Local Interpretable Model-Agnostic Explanations (LIME), Gradient-Based Saliency Maps, and Gradient-Weighted Class Activation Mapping (Grad-CAM) to GNNs.
The experimental results indicate that the LIME-based approach is the most efficient explainability method for multiple tasks in the real-world situation, outperforming even the state-of-the
arXiv Detail & Related papers (2021-11-01T06:27:29Z) - Jointly Attacking Graph Neural Network and its Explanations [50.231829335996814]
Graph Neural Networks (GNNs) have boosted the performance for many graph-related tasks.
Recent studies have shown that GNNs are highly vulnerable to adversarial attacks, where adversaries can mislead the GNNs' prediction by modifying graphs.
We propose a novel attack framework (GEAttack) which can attack both a GNN model and its explanations by simultaneously exploiting their vulnerabilities.
arXiv Detail & Related papers (2021-08-07T07:44:33Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
We propose PGExplainer, a parameterized explainer for Graph Neural Networks (GNNs)
Compared to the existing work, PGExplainer has better generalization ability and can be utilized in an inductive setting easily.
Experiments on both synthetic and real-life datasets show highly competitive performance with up to 24.7% relative improvement in AUC on explaining graph classification.
arXiv Detail & Related papers (2020-11-09T17:15:03Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.