GANExplainer: GAN-based Graph Neural Networks Explainer
- URL: http://arxiv.org/abs/2301.00012v1
- Date: Fri, 30 Dec 2022 23:11:24 GMT
- Title: GANExplainer: GAN-based Graph Neural Networks Explainer
- Authors: Yiqiao Li, Jianlong Zhou, Boyuan Zheng, Fang Chen
- Abstract summary: It is critical to explain why graph neural network (GNN) makes particular predictions for them to be believed in many applications.
We propose GANExplainer, based on Generative Adversarial Network (GAN) architecture.
GANExplainer improves explanation accuracy by up to 35% compared to its alternatives.
- Score: 5.641321839562139
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid deployment of graph neural networks (GNNs) based techniques
into a wide range of applications such as link prediction, node classification,
and graph classification the explainability of GNNs has become an indispensable
component for predictive and trustworthy decision-making. Thus, it is critical
to explain why graph neural network (GNN) makes particular predictions for them
to be believed in many applications. Some GNNs explainers have been proposed
recently. However, they lack to generate accurate and real explanations. To
mitigate these limitations, we propose GANExplainer, based on Generative
Adversarial Network (GAN) architecture. GANExplainer is composed of a generator
to create explanations and a discriminator to assist with the Generator
development. We investigate the explanation accuracy of our models by comparing
the performance of GANExplainer with other state-of-the-art methods. Our
empirical results on synthetic datasets indicate that GANExplainer improves
explanation accuracy by up to 35\% compared to its alternatives.
Related papers
- ACGAN-GNNExplainer: Auxiliary Conditional Generative Explainer for Graph
Neural Networks [7.077341403454516]
Graph neural networks (GNNs) have proven their efficacy in a variety of real-world applications, but their underlying mechanisms remain a mystery.
To address this challenge and enable reliable decision-making, many GNN explainers have been proposed in recent years.
We introduce Auxiliary Generative Adrative Network (ACGAN) into the field of GNN explanation and propose a new GNN explainer dubbedemphACGANGNNExplainer.
arXiv Detail & Related papers (2023-09-29T01:20:28Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Explainability in subgraphs-enhanced Graph Neural Networks [12.526174412246107]
Subgraphs-enhanced Graph Neural Networks (SGNNs) have been introduced to enhance the expressive power of GNNs.
In this work, we adapt PGExplainer, one of the most recent explainers for GNNs, to SGNNs.
We show that our framework is successful in explaining the decision process of an SGNN on graph classification tasks.
arXiv Detail & Related papers (2022-09-16T13:39:10Z) - A Survey of Explainable Graph Neural Networks: Taxonomy and Evaluation
Metrics [8.795591344648294]
We focus on explainable graph neural networks and categorize them based on the use of explainable methods.
We provide the common performance metrics for GNNs explanations and point out several future research directions.
arXiv Detail & Related papers (2022-07-26T01:45:54Z) - Reinforced Causal Explainer for Graph Neural Networks [112.57265240212001]
Explainability is crucial for probing graph neural networks (GNNs)
We propose a reinforcement learning agent, Reinforced Causal Explainer (RC-Explainer)
RC-Explainer generates faithful and concise explanations, and has a better power to unseen graphs.
arXiv Detail & Related papers (2022-04-23T09:13:25Z) - Task-Agnostic Graph Explanations [50.17442349253348]
Graph Neural Networks (GNNs) have emerged as powerful tools to encode graph structured data.
Existing learning-based GNN explanation approaches are task-specific in training.
We propose a Task-Agnostic GNN Explainer (TAGE) trained under self-supervision with no knowledge of downstream tasks.
arXiv Detail & Related papers (2022-02-16T21:11:47Z) - Towards Self-Explainable Graph Neural Network [24.18369781999988]
Graph Neural Networks (GNNs) generalize the deep neural networks to graph-structured data.
GNNs lack explainability, which limits their adoption in scenarios that demand the transparency of models.
We propose a new framework which can find $K$-nearest labeled nodes for each unlabeled node to give explainable node classification.
arXiv Detail & Related papers (2021-08-26T22:45:11Z) - Jointly Attacking Graph Neural Network and its Explanations [50.231829335996814]
Graph Neural Networks (GNNs) have boosted the performance for many graph-related tasks.
Recent studies have shown that GNNs are highly vulnerable to adversarial attacks, where adversaries can mislead the GNNs' prediction by modifying graphs.
We propose a novel attack framework (GEAttack) which can attack both a GNN model and its explanations by simultaneously exploiting their vulnerabilities.
arXiv Detail & Related papers (2021-08-07T07:44:33Z) - SEEN: Sharpening Explanations for Graph Neural Networks using
Explanations from Neighborhoods [0.0]
We propose a method to improve the explanation quality of node classification tasks through aggregation of auxiliary explanations.
Applying SEEN does not require modification of a graph and can be used with diverse explainability techniques.
Experiments on matching motif-participating nodes from a given graph show great improvement in explanation accuracy of up to 12.71%.
arXiv Detail & Related papers (2021-06-16T03:04:46Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
We propose PGExplainer, a parameterized explainer for Graph Neural Networks (GNNs)
Compared to the existing work, PGExplainer has better generalization ability and can be utilized in an inductive setting easily.
Experiments on both synthetic and real-life datasets show highly competitive performance with up to 24.7% relative improvement in AUC on explaining graph classification.
arXiv Detail & Related papers (2020-11-09T17:15:03Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.