Compound Frechet Inception Distance for Quality Assessment of GAN
Created Images
- URL: http://arxiv.org/abs/2106.08575v1
- Date: Wed, 16 Jun 2021 06:53:27 GMT
- Title: Compound Frechet Inception Distance for Quality Assessment of GAN
Created Images
- Authors: Eric J. Nunn, Pejman Khadivi, Shadrokh Samavi
- Abstract summary: One notable application of GANs is developing fake human faces, also known as "deep fakes"
Measuring the quality of the generated images is inherently subjective but attempts to objectify quality using standardized metrics have been made.
We propose to improve the robustness of the evaluation process by integrating lower-level features to cover a wider array of visual defects.
- Score: 7.628527132779575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative adversarial networks or GANs are a type of generative modeling
framework. GANs involve a pair of neural networks engaged in a competition in
iteratively creating fake data, indistinguishable from the real data. One
notable application of GANs is developing fake human faces, also known as "deep
fakes," due to the deep learning algorithms at the core of the GAN framework.
Measuring the quality of the generated images is inherently subjective but
attempts to objectify quality using standardized metrics have been made. One
example of objective metrics is the Frechet Inception Distance (FID), which
measures the difference between distributions of feature vectors for two
separate datasets of images. There are situations that images with low
perceptual qualities are not assigned appropriate FID scores. We propose to
improve the robustness of the evaluation process by integrating lower-level
features to cover a wider array of visual defects. Our proposed method
integrates three levels of feature abstractions to evaluate the quality of
generated images. Experimental evaluations show better performance of the
proposed method for distorted images.
Related papers
- Attention Down-Sampling Transformer, Relative Ranking and Self-Consistency for Blind Image Quality Assessment [17.04649536069553]
No-reference image quality assessment is a challenging domain that addresses estimating image quality without the original reference.
We introduce an improved mechanism to extract local and non-local information from images via different transformer encoders and CNNs.
A self-consistency approach to self-supervision is presented, explicitly addressing the degradation of no-reference image quality assessment (NR-IQA) models.
arXiv Detail & Related papers (2024-09-11T09:08:43Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
Deepfake detection refers to detecting artificially generated or edited faces in images or videos.
We propose a novel Deepfake detection framework named DeepFidelity to adaptively distinguish real and fake faces.
arXiv Detail & Related papers (2023-12-07T07:19:45Z) - Rethinking FID: Towards a Better Evaluation Metric for Image Generation [43.66036053597747]
Inception Distance estimates the distance between a distribution of Inception-v3 features of real images, and those of images generated by the algorithm.
We highlight important drawbacks of FID: Inception's poor representation of the rich and varied content generated by modern text-to-image models, incorrect normality assumptions, and poor sample complexity.
We propose an alternative new metric, CMMD, based on richer CLIP embeddings and the maximum mean discrepancy distance with the Gaussian RBF kernel.
arXiv Detail & Related papers (2023-11-30T19:11:01Z) - On quantifying and improving realism of images generated with diffusion [50.37578424163951]
We propose a metric, called Image Realism Score (IRS), computed from five statistical measures of a given image.
IRS is easily usable as a measure to classify a given image as real or fake.
We experimentally establish the model- and data-agnostic nature of the proposed IRS by successfully detecting fake images generated by Stable Diffusion Model (SDM), Dalle2, Midjourney and BigGAN.
Our efforts have also led to Gen-100 dataset, which provides 1,000 samples for 100 classes generated by four high-quality models.
arXiv Detail & Related papers (2023-09-26T08:32:55Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - Dehazed Image Quality Evaluation: From Partial Discrepancy to Blind
Perception [35.257798506356814]
Image dehazing aims to restore spatial details from hazy images.
We propose a Reduced-Reference dehazed image quality evaluation approach based on Partial Discrepancy.
We extend it to a No-Reference quality assessment metric with Blind Perception.
arXiv Detail & Related papers (2022-11-22T23:49:14Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved remarkable success in various image generation tasks.
Recent work on semantic image synthesis mainly follows the emphde facto Generative Adversarial Nets (GANs)
arXiv Detail & Related papers (2022-06-30T18:31:51Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Deep Superpixel-based Network for Blind Image Quality Assessment [4.079861933099766]
The goal in a blind image quality assessment (BIQA) model is to simulate the process of evaluating images by human eyes.
We propose a deep adaptive superpixel-based network, namely DSN-IQA, to assess the quality of image based on multi-scale and superpixel segmentation.
arXiv Detail & Related papers (2021-10-13T08:26:58Z) - Label Geometry Aware Discriminator for Conditional Generative Networks [40.89719383597279]
Conditional Generative Adversarial Networks (GANs) can generate highly photo realistic images with desired target classes.
These synthetic images have not always been helpful to improve downstream supervised tasks such as image classification.
arXiv Detail & Related papers (2021-05-12T08:17:25Z) - Towards Unsupervised Deep Image Enhancement with Generative Adversarial
Network [92.01145655155374]
We present an unsupervised image enhancement generative network (UEGAN)
It learns the corresponding image-to-image mapping from a set of images with desired characteristics in an unsupervised manner.
Results show that the proposed model effectively improves the aesthetic quality of images.
arXiv Detail & Related papers (2020-12-30T03:22:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.