Attention Down-Sampling Transformer, Relative Ranking and Self-Consistency for Blind Image Quality Assessment
- URL: http://arxiv.org/abs/2409.07115v1
- Date: Wed, 11 Sep 2024 09:08:43 GMT
- Title: Attention Down-Sampling Transformer, Relative Ranking and Self-Consistency for Blind Image Quality Assessment
- Authors: Mohammed Alsaafin, Musab Alsheikh, Saeed Anwar, Muhammad Usman,
- Abstract summary: No-reference image quality assessment is a challenging domain that addresses estimating image quality without the original reference.
We introduce an improved mechanism to extract local and non-local information from images via different transformer encoders and CNNs.
A self-consistency approach to self-supervision is presented, explicitly addressing the degradation of no-reference image quality assessment (NR-IQA) models.
- Score: 17.04649536069553
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The no-reference image quality assessment is a challenging domain that addresses estimating image quality without the original reference. We introduce an improved mechanism to extract local and non-local information from images via different transformer encoders and CNNs. The utilization of Transformer encoders aims to mitigate locality bias and generate a non-local representation by sequentially processing CNN features, which inherently capture local visual structures. Establishing a stronger connection between subjective and objective assessments is achieved through sorting within batches of images based on relative distance information. A self-consistency approach to self-supervision is presented, explicitly addressing the degradation of no-reference image quality assessment (NR-IQA) models under equivariant transformations. Our approach ensures model robustness by maintaining consistency between an image and its horizontally flipped equivalent. Through empirical evaluation of five popular image quality assessment datasets, the proposed model outperforms alternative algorithms in the context of no-reference image quality assessment datasets, especially on smaller datasets. Codes are available at \href{https://github.com/mas94/ADTRS}{https://github.com/mas94/ADTRS}
Related papers
- Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-reference point cloud quality assessment (NR-PCQA) aims to automatically evaluate the perceptual quality of distorted point clouds without available reference.
We propose a novel contrastive pre-training framework tailored for PCQA (CoPA)
Our method outperforms the state-of-the-art PCQA methods on popular benchmarks.
arXiv Detail & Related papers (2024-03-15T07:16:07Z) - ARNIQA: Learning Distortion Manifold for Image Quality Assessment [28.773037051085318]
No-Reference Image Quality Assessment (NR-IQA) aims to develop methods to measure image quality in alignment with human perception without the need for a high-quality reference image.
We propose a self-supervised approach named ARNIQA for modeling the image distortion manifold to obtain quality representations in an intrinsic manner.
arXiv Detail & Related papers (2023-10-20T17:22:25Z) - Regression-free Blind Image Quality Assessment with Content-Distortion
Consistency [42.683300312253884]
We propose a regression-free framework for image quality evaluation.
It is based upon retrieving locally similar instances by incorporating semantic and distortion feature spaces.
The proposed method achieves competitive, even superior performance compared to state-of-the-art regression-based methods.
arXiv Detail & Related papers (2023-07-18T14:19:28Z) - Image Deblurring by Exploring In-depth Properties of Transformer [86.7039249037193]
We leverage deep features extracted from a pretrained vision transformer (ViT) to encourage recovered images to be sharp without sacrificing the performance measured by the quantitative metrics.
By comparing the transformer features between recovered image and target one, the pretrained transformer provides high-resolution blur-sensitive semantic information.
One regards the features as vectors and computes the discrepancy between representations extracted from recovered image and target one in Euclidean space.
arXiv Detail & Related papers (2023-03-24T14:14:25Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet pre-trained deep neural networks (DNNs) show notable transferability for building effective image quality assessment (IQA) models.
We develop a novel full-reference IQA (FR-IQA) model based exclusively on pre-trained DNN features.
We conduct comprehensive experiments to demonstrate the superiority of the proposed quality model on five standard IQA datasets.
arXiv Detail & Related papers (2022-11-09T14:57:27Z) - Learning Transformer Features for Image Quality Assessment [53.51379676690971]
We propose a unified IQA framework that utilizes CNN backbone and transformer encoder to extract features.
The proposed framework is compatible with both FR and NR modes and allows for a joint training scheme.
arXiv Detail & Related papers (2021-12-01T13:23:00Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - No-Reference Image Quality Assessment via Transformers, Relative
Ranking, and Self-Consistency [38.88541492121366]
The goal of No-Reference Image Quality Assessment (NR-IQA) is to estimate the perceptual image quality in accordance with subjective evaluations.
We propose a novel model to address the NR-IQA task by leveraging a hybrid approach that benefits from Convolutional Neural Networks (CNNs) and self-attention mechanism in Transformers.
arXiv Detail & Related papers (2021-08-16T02:07:08Z) - Compound Frechet Inception Distance for Quality Assessment of GAN
Created Images [7.628527132779575]
One notable application of GANs is developing fake human faces, also known as "deep fakes"
Measuring the quality of the generated images is inherently subjective but attempts to objectify quality using standardized metrics have been made.
We propose to improve the robustness of the evaluation process by integrating lower-level features to cover a wider array of visual defects.
arXiv Detail & Related papers (2021-06-16T06:53:27Z) - Towards Unsupervised Deep Image Enhancement with Generative Adversarial
Network [92.01145655155374]
We present an unsupervised image enhancement generative network (UEGAN)
It learns the corresponding image-to-image mapping from a set of images with desired characteristics in an unsupervised manner.
Results show that the proposed model effectively improves the aesthetic quality of images.
arXiv Detail & Related papers (2020-12-30T03:22:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.