ParticleAugment: Sampling-Based Data Augmentation
- URL: http://arxiv.org/abs/2106.08693v1
- Date: Wed, 16 Jun 2021 10:56:02 GMT
- Title: ParticleAugment: Sampling-Based Data Augmentation
- Authors: Alexander Tsaregorodtsev, Vasileios Belagiannis
- Abstract summary: We propose a particle filtering formulation to find optimal augmentation policies and their schedules during model training.
We show that our formulation for automated augmentation reaches promising results on CIFAR-10, CIFAR-100, and ImageNet datasets.
- Score: 80.44268663372233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an automated data augmentation approach for image classification.
We formulate the problem as Monte Carlo sampling where our goal is to
approximate the optimal augmentation policies. We propose a particle filtering
formulation to find optimal augmentation policies and their schedules during
model training. Our performance measurement procedure relies on a validation
subset of our training set, while the policy transition model depends on a
Gaussian prior and an optional augmentation velocity parameter. In our
experiments, we show that our formulation for automated augmentation reaches
promising results on CIFAR-10, CIFAR-100, and ImageNet datasets using the
standard network architectures for this problem. By comparing with the related
work, we also show that our method reaches a balance between the computational
cost of policy search and the model performance.
Related papers
- Truncating Trajectories in Monte Carlo Policy Evaluation: an Adaptive Approach [51.76826149868971]
Policy evaluation via Monte Carlo simulation is at the core of many MC Reinforcement Learning (RL) algorithms.
We propose as a quality index a surrogate of the mean squared error of a return estimator that uses trajectories of different lengths.
We present an adaptive algorithm called Robust and Iterative Data collection strategy Optimization (RIDO)
arXiv Detail & Related papers (2024-10-17T11:47:56Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
We introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning.
By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - Experiment Planning with Function Approximation [49.50254688629728]
We study the problem of experiment planning with function approximation in contextual bandit problems.
We propose two experiment planning strategies compatible with function approximation.
We show that a uniform sampler achieves competitive optimality rates in the setting where the number of actions is small.
arXiv Detail & Related papers (2024-01-10T14:40:23Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - GPU-Accelerated Policy Optimization via Batch Automatic Differentiation
of Gaussian Processes for Real-World Control [8.720903734757627]
We develop a policy optimization method by leveraging fast predictive sampling methods to process batches of trajectories in every forward pass.
We demonstrate the effectiveness of our approach in training policies on a set of reference-tracking control experiments with a heavy-duty machine.
arXiv Detail & Related papers (2022-02-28T09:31:15Z) - On Effective Scheduling of Model-based Reinforcement Learning [53.027698625496015]
We propose a framework named AutoMBPO to automatically schedule the real data ratio.
In this paper, we first theoretically analyze the role of real data in policy training, which suggests that gradually increasing the ratio of real data yields better performance.
arXiv Detail & Related papers (2021-11-16T15:24:59Z) - Model-Based Policy Search Using Monte Carlo Gradient Estimation with
Real Systems Application [12.854118767247453]
We present a Model-Based Reinforcement Learning (MBRL) algorithm named emphMonte Carlo Probabilistic Inference for Learning COntrol (MC-PILCO)
The algorithm relies on Gaussian Processes (GPs) to model the system dynamics and on a Monte Carlo approach to estimate the policy gradient.
Numerical comparisons in a simulated cart-pole environment show that MC-PILCO exhibits better data efficiency and control performance.
arXiv Detail & Related papers (2021-01-28T17:01:15Z) - Variational Model-based Policy Optimization [34.80171122943031]
Model-based reinforcement learning (RL) algorithms allow us to combine model-generated data with those collected from interaction with the real system in order to alleviate the data efficiency problem in RL.
We propose an objective function as a variational lower-bound of a log-likelihood of a log-likelihood to jointly learn and improve model and policy.
Our experiments on a number of continuous control tasks show that despite being more complex, our model-based (E-step) algorithm, called emactoral model-based policy optimization (VMBPO), is more sample-efficient and
arXiv Detail & Related papers (2020-06-09T18:30:15Z) - On the Generalization Effects of Linear Transformations in Data
Augmentation [32.01435459892255]
Data augmentation is a powerful technique to improve performance in applications such as image and text classification tasks.
We study a family of linear transformations and study their effects on the ridge estimator in an over-parametrized linear regression setting.
We propose an augmentation scheme that searches over the space of transformations by how uncertain the model is about the transformed data.
arXiv Detail & Related papers (2020-05-02T04:10:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.