論文の概要: GelSight Wedge: Measuring High-Resolution 3D Contact Geometry with a
Compact Robot Finger
- arxiv url: http://arxiv.org/abs/2106.08851v1
- Date: Wed, 16 Jun 2021 15:15:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-17 17:12:51.379625
- Title: GelSight Wedge: Measuring High-Resolution 3D Contact Geometry with a
Compact Robot Finger
- Title(参考訳): gelsight wedge:コンパクトロボット指による高解像度3d接触形状の測定
- Authors: Shaoxiong Wang, Yu She, Branden Romero, Edward Adelson
- Abstract要約: GelSight Wedgeセンサーは、高解像度の3D再構成を実現しつつ、ロボットの指のコンパクトな形状に最適化されている。
3次元空間におけるポーズ追跡のための再構成3次元幾何の有効性と可能性を示す。
- 参考スコア(独自算出の注目度): 8.047951969722794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-based tactile sensors have the potential to provide important contact
geometry to localize the objective with visual occlusion. However, it is
challenging to measure high-resolution 3D contact geometry for a compact robot
finger, to simultaneously meet optical and mechanical constraints. In this
work, we present the GelSight Wedge sensor, which is optimized to have a
compact shape for robot fingers, while achieving high-resolution 3D
reconstruction. We evaluate the 3D reconstruction under different lighting
configurations, and extend the method from 3 lights to 1 or 2 lights. We
demonstrate the flexibility of the design by shrinking the sensor to the size
of a human finger for fine manipulation tasks. We also show the effectiveness
and potential of the reconstructed 3D geometry for pose tracking in the 3D
space.
- Abstract(参考訳): 視覚に基づく触覚センサは、視覚的閉塞で目的をローカライズするための重要な接触幾何学を提供する可能性がある。
しかし,小型ロボット指の高分解能3次元接触形状を計測し,光学的制約と機械的制約を同時に満たすことは困難である。
本稿では,ロボットの指にコンパクトな形状に最適化されたGelSight Wedgeセンサについて述べる。
異なる照明構成下での3次元再構成を評価し,3灯から1灯または2灯まで拡張した。
センサを人間の指の大きさに縮小して微妙な操作を行うことにより,設計の柔軟性を実証する。
また,3次元空間におけるポーズ追跡における再構成3次元形状の有効性と可能性を示す。
関連論文リスト
- Towards 3D Vision with Low-Cost Single-Photon Cameras [24.711165102559438]
小型で省エネで低コストな単光子カメラによる計測に基づいて,任意のランベルト物体の3次元形状を再構成する手法を提案する。
我々の研究は、画像ベースモデリングとアクティブレンジスキャンの関連性を引き合いに出し、単光子カメラによる3Dビジョンに向けた一歩である。
論文 参考訳(メタデータ) (2024-03-26T15:40:05Z) - TouchSDF: A DeepSDF Approach for 3D Shape Reconstruction using
Vision-Based Tactile Sensing [29.691786688595762]
人間は視覚と触覚に頼り、身体環境の総合的な3D理解を開発する。
触覚3次元形状再構成のための深層学習手法であるTouchSDFを提案する。
本手法は,(1)触覚画像をタッチ位置の局所メッシュにマッピングする畳み込みニューラルネットワーク,(2)署名された距離関数を予測して所望の3次元形状を抽出する暗黙的ニューラルネットワークの2つのコンポーネントから構成される。
論文 参考訳(メタデータ) (2023-11-21T13:43:06Z) - MagicDrive: Street View Generation with Diverse 3D Geometry Control [82.69871576797166]
多様な3D幾何学制御を提供する新しいストリートビュー生成フレームワークであるMagicDriveを紹介した。
私たちの設計では、複数のカメラビュー間の一貫性を確保するために、クロスビューアテンションモジュールが組み込まれています。
論文 参考訳(メタデータ) (2023-10-04T06:14:06Z) - gSDF: Geometry-Driven Signed Distance Functions for 3D Hand-Object
Reconstruction [94.46581592405066]
我々は手の構造を利用してSDFによる形状復元の指導を行う。
我々は、ポーズ変換のキネマティック連鎖を予測し、SDFを高調波ハンドポーズと整列させる。
論文 参考訳(メタデータ) (2023-04-24T10:05:48Z) - OmniAvatar: Geometry-Guided Controllable 3D Head Synthesis [81.70922087960271]
我々は,非構造画像から学習した新しい幾何学誘導型3次元頭部合成モデルであるOmniAvatarを提案する。
我々のモデルは、最先端の手法と比較して、魅力的なダイナミックディテールで、より好ましいID保存された3Dヘッドを合成することができる。
論文 参考訳(メタデータ) (2023-03-27T18:36:53Z) - DenseTact: Optical Tactile Sensor for Dense Shape Reconstruction [0.0]
視覚に基づく触覚センサは、リッチな触覚フィードバックが操作タスクのパフォーマンス向上と相関しているため、広く利用されている。
高解像度の既存の触覚センサーソリューションには、低い精度、高価なコンポーネント、スケーラビリティの欠如を含む制限がある。
本稿では,3次元センサの表面再構成のための高分解能表面変形モデルを用いた,安価でスケーラブルでコンパクトな触覚センサを提案する。
論文 参考訳(メタデータ) (2022-01-04T22:26:14Z) - EGFN: Efficient Geometry Feature Network for Fast Stereo 3D Object
Detection [51.52496693690059]
高速ステレオベース3Dオブジェクト検出器は高精度指向法よりもはるかに遅れている。
主な理由として,高速ステレオ法における3次元幾何学的特徴表現の欠如や不足があげられる。
提案された EGFN は、YOLOStsereo3D よりも5.16%向上し、mAP$_3d$ をわずか12msで上回った。
論文 参考訳(メタデータ) (2021-11-28T05:25:36Z) - A soft thumb-sized vision-based sensor with accurate all-round force
perception [19.905154050561013]
視覚ベースの触覚センサーは、安価な高解像度カメラとコンピュータビジョン技術の成功により、ロボットタッチへの有望なアプローチとして登場した。
我々はInsightという名前の、頑丈でソフトで低コストで、視覚ベースで親指サイズの3D触覚センサーを提示する。
論文 参考訳(メタデータ) (2021-11-10T20:46:23Z) - Active 3D Shape Reconstruction from Vision and Touch [66.08432412497443]
人間は、視覚と触覚を共同で利用して、活発な物体探索を通じて世界の3D理解を構築する。
3次元形状の再構成では、最新の進歩はRGB画像、深度マップ、触覚読影などの限られた感覚データの静的データセットに依存している。
1)高空間分解能視覚に基づく触覚センサを応用した3次元物体のアクティブタッチに活用した触覚シミュレータ,2)触覚やビジュオクティビティルを先導するメッシュベースの3次元形状再構成モデル,3)触覚やビジュオのいずれかを用いたデータ駆動型ソリューションのセットからなるシステムを導入する。
論文 参考訳(メタデータ) (2021-07-20T15:56:52Z) - Deep Continuous Fusion for Multi-Sensor 3D Object Detection [103.5060007382646]
本稿では,LIDARとカメラを併用して高精度な位置検出を実現する3Dオブジェクト検出器を提案する。
我々は,連続畳み込みを利用して画像とlidar特徴マップを異なるレベルの解像度で融合する,エンドツーエンド学習可能なアーキテクチャを設計した。
論文 参考訳(メタデータ) (2020-12-20T18:43:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。