論文の概要: Deformation Driven Seq2Seq Longitudinal Tumor and Organs-at-Risk
Prediction for Radiotherapy
- arxiv url: http://arxiv.org/abs/2106.09076v1
- Date: Wed, 16 Jun 2021 18:29:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-18 15:54:30.756773
- Title: Deformation Driven Seq2Seq Longitudinal Tumor and Organs-at-Risk
Prediction for Radiotherapy
- Title(参考訳): 変形駆動性seq2seq縦型腫瘍と放射線治療のための臓器リスク予測
- Authors: Donghoon Lee, Sadegh R Alam, Jue Jiang, Pengpeng Zhang, Saad Nadeem
and Yu-Chi Hu
- Abstract要約: 畳み込み長短記憶(ConvLSTM)に基づく新しい3次元シーケンス・ツー・シーケンスモデルを提案する。
将来の解剖学的変化と腫瘍の体積の変化を予測し、重要なOARも予測する。
私たちは2つの放射線治療データセットでモデルを検証した。
- 参考スコア(独自算出の注目度): 12.05638699290782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Purpose: Radiotherapy presents unique challenges and clinical requirements
for longitudinal tumor and organ-at-risk (OAR) prediction during treatment. The
challenges include tumor inflammation/edema and radiation-induced changes in
organ geometry, whereas the clinical requirements demand flexibility in
input/output sequence timepoints to update the predictions on rolling basis and
the grounding of all predictions in relationship to the pre-treatment imaging
information for response and toxicity assessment in adaptive radiotherapy.
Methods: To deal with the aforementioned challenges and to comply with the
clinical requirements, we present a novel 3D sequence-to-sequence model based
on Convolution Long Short Term Memory (ConvLSTM) that makes use of series of
deformation vector fields (DVF) between individual timepoints and reference
pre-treatment/planning CTs to predict future anatomical deformations and
changes in gross tumor volume as well as critical OARs. High-quality DVF
training data is created by employing hyper-parameter optimization on the
subset of the training data with DICE coefficient and mutual information
metric. We validated our model on two radiotherapy datasets: a publicly
available head-and-neck dataset (28 patients with manually contoured pre-,
mid-, and post-treatment CTs), and an internal non-small cell lung cancer
dataset (63 patients with manually contoured planning CT and 6 weekly CBCTs).
Results: The use of DVF representation and skip connections overcomes the
blurring issue of ConvLSTM prediction with the traditional image
representation. The mean and standard deviation of DICE for predictions of lung
GTV at week 4, 5, and 6 were 0.83$\pm$0.09, 0.82$\pm$0.08, and 0.81$\pm$0.10,
respectively, and for post-treatment ipsilateral and contralateral parotids,
were 0.81$\pm$0.06 and 0.85$\pm$0.02.
- Abstract(参考訳): 目的: 放射線療法は, 治療中の縦隔腫瘍およびOAR予測に固有の課題と臨床要件を提示する。
これらの課題は腫瘍炎症・浮腫・放射線による臓器形状の変化である一方、臨床要件は、治療前画像情報と適応放射線治療における毒性評価との関連において、ロールベースで予測を更新するための入出力シーケンスタイムポイントの柔軟性と全ての予測の接地を要求する。
方法: 上記の課題に対処し, 臨床要件を満たすために, 個別の時間点と参照前処理/計画CT間の一連の変形ベクトル場(DVF)を用いて, 将来的な解剖学的変形と腫瘍量の変化, および重要なOARを用いた, 畳み込み長短期記憶(ConvLSTM)に基づく新しい3Dシークエンス・ツー・シーケンスモデルを提案する。
DICE係数と相互情報量を用いたトレーニングデータのサブセットにハイパーパラメータ最適化を適用することにより、高品質なDVFトレーニングデータを生成する。
2つの放射線治療データセット(手作業による前・中・後治療ct28例)と内部非小細胞肺癌データセット(手作業による計画ctと週6回のcbct)について検証した。
結果: dvf表現とスキップ接続の使用は,従来の画像表現を用いたconvlstm予測のぼやけた問題を克服する。
4週目,5週目,6週目における肺GTV予測におけるDICEの平均偏差は0.83$\pm$0.09,0.82$\pm$0.08,0.81$\pm$0.10であり,治療後副耳下腺腫および対側耳下腺腫では0.81$\pm$0.06,0.85$\pm$0.02であった。
関連論文リスト
- Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation [47.119513326344126]
BraTS-MEN-RTの課題は、脳MRIを計画する放射線治療の最大のマルチ機関データセットを使用して、自動セグメンテーションアルゴリズムを進化させることである。
それぞれの症例には、3D後T1強調放射線治療計画MRIがネイティブな取得スペースに含まれている。
ターゲットボリュームアノテーションは、確立された放射線治療計画プロトコルに準拠している。
論文 参考訳(メタデータ) (2024-05-28T17:25:43Z) - Personalized Predictions of Glioblastoma Infiltration: Mathematical Models, Physics-Informed Neural Networks and Multimodal Scans [1.696497161881026]
医学的MRI検査からGlioblastoma (GBM) の浸潤を予測することは腫瘍の増殖動態を理解する上で重要である。
GBM成長の数学的モデルは、腫瘍細胞の空間分布の予測においてデータを補完することができる。
本研究では,単一3次元構造MRIスナップショットからGBM成長の反応拡散PDEモデルの患者特異的パラメータを推定するために,物理情報ニューラルネットワーク(PINN)を用いた手法を提案する。
論文 参考訳(メタデータ) (2023-11-28T05:45:20Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - Comparing 3D deformations between longitudinal daily CBCT acquisitions
using CNN for head and neck radiotherapy toxicity prediction [1.8406176502821678]
本研究の目的は,頭頸部癌に対する放射線治療中に毎日取得したCBCTの臨床的意義を明らかにすることである。
平面CTと長手CBCTの変形のヤコビ行列を解析する成分を含む変形可能な3次元分類パイプラインを提案する。
論文 参考訳(メタデータ) (2023-03-07T15:07:43Z) - Validated respiratory drug deposition predictions from 2D and 3D medical
images with statistical shape models and convolutional neural networks [47.187609203210705]
患者固有の沈着モデリングのための自動計算フレームワークを開発し,検証することを目的としている。
2次元胸部X線と3次元CT画像から3次元患者の呼吸動態を生成できる画像処理手法が提案されている。
論文 参考訳(メタデータ) (2023-03-02T07:47:07Z) - Foresight -- Deep Generative Modelling of Patient Timelines using
Electronic Health Records [46.024501445093755]
医学史の時間的モデリングは、将来の出来事を予測し、シミュレートしたり、リスクを見積り、代替診断を提案したり、合併症を予測するために使用することができる。
我々は、文書テキストを構造化されたコード化された概念に変換するためにNER+Lツール(MedCAT)を使用する新しいGPT3ベースのパイプラインであるForesightを提示する。
論文 参考訳(メタデータ) (2022-12-13T19:06:00Z) - Recurrence-free Survival Prediction under the Guidance of Automatic
Gross Tumor Volume Segmentation for Head and Neck Cancers [8.598790229614071]
自動原発性腫瘍 (GTVp) とリンパ節郭清法 (GTVn) を開発した。
腫瘍の分節体積から放射能の特徴を抽出し,RFS予測モデルを構築した。
論文 参考訳(メタデータ) (2022-09-22T18:44:57Z) - Multimodal PET/CT Tumour Segmentation and Prediction of Progression-Free
Survival using a Full-Scale UNet with Attention [0.8138288420049126]
MICCAI 2021 ヘッドとネックタマ (HECKTOR) セグメンテーションと結果予測の課題は、セグメンテーション法を比較するためのプラットフォームを作成する。
腫瘍容積セグメンテーションのために複数のニューラルネットワークを訓練し,これらのセグメンテーションを組込み,平均Dice類似度係数0.75をクロスバリデーションで達成した。
患者進行自由生存の予測のために,臨床,放射線学,深層学習機能を組み合わせたCox比例的ハザード回帰法を提案する。
論文 参考訳(メタデータ) (2021-11-06T10:28:48Z) - Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation [44.02622933605018]
放射線モデルは、グリオ芽腫(GBM)の結果予測のための臨床データを上回ることが示されています。
GBM患者の生存率(OS),IDH変異,O-6-メチルグアニン-DNA-メチルトランスフェラーゼ(MGMT)プロモーターメチル化,EGFR(EGFR)VII増幅,Ki-67発現の9種類の機械学習分類器を比較した。
xgb は os (74.5%), ab for idh 変異 (88%), mgmt メチル化 (71,7%), ki-67 発現 (86,6%), egfr増幅 (81。
論文 参考訳(メタデータ) (2021-02-10T15:10:37Z) - Joint Prediction and Time Estimation of COVID-19 Developing Severe
Symptoms using Chest CT Scan [49.209225484926634]
術後に重篤な症状を発症するかどうかを判定するための共同分類法と回帰法を提案する。
提案手法は,各試料の重量を考慮し,外乱の影響を低減し,不均衡な分類の問題を検討する。
提案手法では, 重症症例の予測精度76.97%, 相関係数0.524, 変換時間0.55日差が得られた。
論文 参考訳(メタデータ) (2020-05-07T12:16:37Z) - Patient-Specific Finetuning of Deep Learning Models for Adaptive
Radiotherapy in Prostate CT [1.3124513975412255]
OAR(Organs-At-Risk)は放射線治療計画において重要なステップである。
本研究では、治療セッションに蓄積されたパーソナライズされた解剖学的知識を活用し、事前学習された畳み込みニューラルネットワーク(CNN)のセグメンテーション精度を向上させる。
そこで我々は, より早い治療率で得られた画像に基づいて, CNNモデルを特定の患者に微調整するトランスファーラーニングアプローチについて検討した。
論文 参考訳(メタデータ) (2020-02-17T12:53:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。