Joining datasets via data augmentation in the label space for neural
networks
- URL: http://arxiv.org/abs/2106.09260v1
- Date: Thu, 17 Jun 2021 06:08:11 GMT
- Title: Joining datasets via data augmentation in the label space for neural
networks
- Authors: Jake Zhao (Junbo), Mingfeng Ou, Linji Xue, Yunkai Cui, Sai Wu, Gang
Chen
- Abstract summary: We propose a new technique leveraging artificially created knowledge graph, recurrent neural networks and policy gradient that successfully achieve the dataset joining in the label space.
Empirical results on both image and text classification justify the validity of our approach.
- Score: 6.036150783745836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most, if not all, modern deep learning systems restrict themselves to a
single dataset for neural network training and inference. In this article, we
are interested in systematic ways to join datasets that are made of similar
purposes. Unlike previous published works that ubiquitously conduct the dataset
joining in the uninterpretable latent vectorial space, the core to our method
is an augmentation procedure in the label space. The primary challenge to
address the label space for dataset joining is the discrepancy between labels:
non-overlapping label annotation sets, different labeling granularity or
hierarchy and etc. Notably we propose a new technique leveraging artificially
created knowledge graph, recurrent neural networks and policy gradient that
successfully achieve the dataset joining in the label space. Empirical results
on both image and text classification justify the validity of our approach.
Related papers
- Reducing Labeling Costs in Sentiment Analysis via Semi-Supervised Learning [0.0]
This study explores label propagation in semi-supervised learning.
We employ a transductive label propagation method based on the manifold assumption for text classification.
By extending labels based on cosine proximity within a nearest neighbor graph from network embeddings, we combine unlabeled data into supervised learning.
arXiv Detail & Related papers (2024-10-15T07:25:33Z) - Label merge-and-split: A graph-colouring approach for memory-efficient brain parcellation [3.2506898256325933]
Whole brain parcellation requires inferring hundreds of segmentation labels in large image volumes.
We introduce label merge-and-split, a method that first greatly reduces the effective number of labels required for learning-based whole brain parcellation.
arXiv Detail & Related papers (2024-04-16T13:47:27Z) - Description-Enhanced Label Embedding Contrastive Learning for Text
Classification [65.01077813330559]
Self-Supervised Learning (SSL) in model learning process and design a novel self-supervised Relation of Relation (R2) classification task.
Relation of Relation Learning Network (R2-Net) for text classification, in which text classification and R2 classification are treated as optimization targets.
external knowledge from WordNet to obtain multi-aspect descriptions for label semantic learning.
arXiv Detail & Related papers (2023-06-15T02:19:34Z) - Label Name is Mantra: Unifying Point Cloud Segmentation across
Heterogeneous Datasets [17.503843467554592]
We propose a principled approach that supports learning from heterogeneous datasets with different label sets.
Our idea is to utilize a pre-trained language model to embed discrete labels to a continuous latent space with the help of their label names.
Our model outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2023-03-19T06:14:22Z) - LESS: Label-Efficient Semantic Segmentation for LiDAR Point Clouds [62.49198183539889]
We propose a label-efficient semantic segmentation pipeline for outdoor scenes with LiDAR point clouds.
Our method co-designs an efficient labeling process with semi/weakly supervised learning.
Our proposed method is even highly competitive compared to the fully supervised counterpart with 100% labels.
arXiv Detail & Related papers (2022-10-14T19:13:36Z) - Label-Enhanced Graph Neural Network for Semi-supervised Node
Classification [32.64730237473914]
We present a label-enhanced learning framework for Graph Neural Networks (GNNs)
It first models each label as a virtual center for intra-class nodes and then jointly learns the representations of both nodes and labels.
Our approach could not only smooth the representations of nodes belonging to the same class, but also explicitly encode the label semantics into the learning process of GNNs.
arXiv Detail & Related papers (2022-05-31T09:48:47Z) - Learning Semantic Segmentation from Multiple Datasets with Label Shifts [101.24334184653355]
This paper proposes UniSeg, an effective approach to automatically train models across multiple datasets with differing label spaces.
Specifically, we propose two losses that account for conflicting and co-occurring labels to achieve better generalization performance in unseen domains.
arXiv Detail & Related papers (2022-02-28T18:55:19Z) - GuidedMix-Net: Semi-supervised Semantic Segmentation by Using Labeled
Images as Reference [90.5402652758316]
We propose a novel method for semi-supervised semantic segmentation named GuidedMix-Net.
It uses labeled information to guide the learning of unlabeled instances.
It achieves competitive segmentation accuracy and significantly improves the mIoU by +7$%$ compared to previous approaches.
arXiv Detail & Related papers (2021-12-28T06:48:03Z) - GuidedMix-Net: Learning to Improve Pseudo Masks Using Labeled Images as
Reference [153.354332374204]
We propose a novel method for semi-supervised semantic segmentation named GuidedMix-Net.
We first introduce a feature alignment objective between labeled and unlabeled data to capture potentially similar image pairs.
MITrans is shown to be a powerful knowledge module for further progressive refining features of unlabeled data.
Along with supervised learning for labeled data, the prediction of unlabeled data is jointly learned with the generated pseudo masks.
arXiv Detail & Related papers (2021-06-29T02:48:45Z) - PseudoSeg: Designing Pseudo Labels for Semantic Segmentation [78.35515004654553]
We present a re-design of pseudo-labeling to generate structured pseudo labels for training with unlabeled or weakly-labeled data.
We demonstrate the effectiveness of the proposed pseudo-labeling strategy in both low-data and high-data regimes.
arXiv Detail & Related papers (2020-10-19T17:59:30Z) - Network Embedding with Completely-imbalanced Labels [0.0]
We propose two novel semi-supervised network embedding methods.
The first one is a shallow method named RSDNE. Specifically, to benefit from the completely-imbalanced labels, RSDNE guarantees both intra-class similarity and inter-class dissimilarity in an approximate way.
The other method is RECT which is a new class of graph neural networks. Different from RSDNE, to benefit from the completely-imbalanced labels, RECT explores the class-semantic knowledge. This enables RECT to handle networks with node features and multi-label setting.
arXiv Detail & Related papers (2020-07-07T15:22:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.