Label merge-and-split: A graph-colouring approach for memory-efficient brain parcellation
- URL: http://arxiv.org/abs/2404.10572v2
- Date: Thu, 1 Aug 2024 10:34:47 GMT
- Title: Label merge-and-split: A graph-colouring approach for memory-efficient brain parcellation
- Authors: Aaron Kujawa, Reuben Dorent, Sebastien Ourselin, Tom Vercauteren,
- Abstract summary: Whole brain parcellation requires inferring hundreds of segmentation labels in large image volumes.
We introduce label merge-and-split, a method that first greatly reduces the effective number of labels required for learning-based whole brain parcellation.
- Score: 3.2506898256325933
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Whole brain parcellation requires inferring hundreds of segmentation labels in large image volumes and thus presents significant practical challenges for deep learning approaches. We introduce label merge-and-split, a method that first greatly reduces the effective number of labels required for learning-based whole brain parcellation and then recovers original labels. Using a greedy graph colouring algorithm, our method automatically groups and merges multiple spatially separate labels prior to model training and inference. The merged labels may be semantically unrelated. A deep learning model is trained to predict merged labels. At inference time, original labels are restored using atlas-based influence regions. In our experiments, the proposed approach reduces the number of labels by up to 68% while achieving segmentation accuracy comparable to the baseline method without label merging and splitting. Moreover, model training and inference times as well as GPU memory requirements were reduced significantly. The proposed method can be applied to all semantic segmentation tasks with a large number of spatially separate classes within an atlas-based prior.
Related papers
- Reducing Labeling Costs in Sentiment Analysis via Semi-Supervised Learning [0.0]
This study explores label propagation in semi-supervised learning.
We employ a transductive label propagation method based on the manifold assumption for text classification.
By extending labels based on cosine proximity within a nearest neighbor graph from network embeddings, we combine unlabeled data into supervised learning.
arXiv Detail & Related papers (2024-10-15T07:25:33Z) - Determined Multi-Label Learning via Similarity-Based Prompt [12.428779617221366]
In multi-label classification, each training instance is associated with multiple class labels simultaneously.
To alleviate this problem, a novel labeling setting termed textitDetermined Multi-Label Learning (DMLL) is proposed.
arXiv Detail & Related papers (2024-03-25T07:08:01Z) - Scalable Label Distribution Learning for Multi-Label Classification [43.52928088881866]
Multi-label classification (MLC) refers to the problem of tagging a given instance with a set of relevant labels.
Most existing MLC methods are based on the assumption that the correlation of two labels in each label pair is symmetric.
Most existing methods design learning processes associated with the number of labels, which makes their computational complexity a bottleneck when scaling up to large-scale output space.
arXiv Detail & Related papers (2023-11-28T06:52:53Z) - Towards Imbalanced Large Scale Multi-label Classification with Partially
Annotated Labels [8.977819892091]
Multi-label classification is a widely encountered problem in daily life, where an instance can be associated with multiple classes.
In this work, we address the issue of label imbalance and investigate how to train neural networks using partial labels.
arXiv Detail & Related papers (2023-07-31T21:50:48Z) - Bridging the Gap between Model Explanations in Partially Annotated
Multi-label Classification [85.76130799062379]
We study how false negative labels affect the model's explanation.
We propose to boost the attribution scores of the model trained with partial labels to make its explanation resemble that of the model trained with full labels.
arXiv Detail & Related papers (2023-04-04T14:00:59Z) - LESS: Label-Efficient Semantic Segmentation for LiDAR Point Clouds [62.49198183539889]
We propose a label-efficient semantic segmentation pipeline for outdoor scenes with LiDAR point clouds.
Our method co-designs an efficient labeling process with semi/weakly supervised learning.
Our proposed method is even highly competitive compared to the fully supervised counterpart with 100% labels.
arXiv Detail & Related papers (2022-10-14T19:13:36Z) - GuidedMix-Net: Semi-supervised Semantic Segmentation by Using Labeled
Images as Reference [90.5402652758316]
We propose a novel method for semi-supervised semantic segmentation named GuidedMix-Net.
It uses labeled information to guide the learning of unlabeled instances.
It achieves competitive segmentation accuracy and significantly improves the mIoU by +7$%$ compared to previous approaches.
arXiv Detail & Related papers (2021-12-28T06:48:03Z) - Active Learning in Incomplete Label Multiple Instance Multiple Label
Learning [17.5720245903743]
We propose a novel bag-class pair based approach for active learning in the MIML setting.
Our approach is based on a discriminative graphical model with efficient and exact inference.
arXiv Detail & Related papers (2021-07-22T17:01:28Z) - A Closer Look at Self-training for Zero-Label Semantic Segmentation [53.4488444382874]
Being able to segment unseen classes not observed during training is an important technical challenge in deep learning.
Prior zero-label semantic segmentation works approach this task by learning visual-semantic embeddings or generative models.
We propose a consistency regularizer to filter out noisy pseudo-labels by taking the intersections of the pseudo-labels generated from different augmentations of the same image.
arXiv Detail & Related papers (2021-04-21T14:34:33Z) - PseudoSeg: Designing Pseudo Labels for Semantic Segmentation [78.35515004654553]
We present a re-design of pseudo-labeling to generate structured pseudo labels for training with unlabeled or weakly-labeled data.
We demonstrate the effectiveness of the proposed pseudo-labeling strategy in both low-data and high-data regimes.
arXiv Detail & Related papers (2020-10-19T17:59:30Z) - Unsupervised Person Re-identification via Multi-label Classification [55.65870468861157]
This paper formulates unsupervised person ReID as a multi-label classification task to progressively seek true labels.
Our method starts by assigning each person image with a single-class label, then evolves to multi-label classification by leveraging the updated ReID model for label prediction.
To boost the ReID model training efficiency in multi-label classification, we propose the memory-based multi-label classification loss (MMCL)
arXiv Detail & Related papers (2020-04-20T12:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.