Frustratingly Easy Transferability Estimation
- URL: http://arxiv.org/abs/2106.09362v1
- Date: Thu, 17 Jun 2021 10:27:52 GMT
- Title: Frustratingly Easy Transferability Estimation
- Authors: Long-Kai Huang, Ying Wei, Yu Rong, Qiang Yang and Junzhou Huang
- Abstract summary: We propose a simple, efficient, and effective transferability measure named TransRate.
TransRate measures the transferability as the mutual information between the features of target examples extracted by a pre-trained model and labels of them.
Despite its extraordinary simplicity in 10 lines of codes, TransRate performs remarkably well in extensive evaluations on 22 pre-trained models and 16 downstream tasks.
- Score: 64.42879325144439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transferability estimation has been an essential tool in selecting a
pre-trained model and the layers of it to transfer, so as to maximize the
performance on a target task and prevent negative transfer. Existing estimation
algorithms either require intensive training on target tasks or have
difficulties in evaluating the transferability between layers. We propose a
simple, efficient, and effective transferability measure named TransRate. With
single pass through the target data, TransRate measures the transferability as
the mutual information between the features of target examples extracted by a
pre-trained model and labels of them. We overcome the challenge of efficient
mutual information estimation by resorting to coding rate that serves as an
effective alternative to entropy. TransRate is theoretically analyzed to be
closely related to the performance after transfer learning. Despite its
extraordinary simplicity in 10 lines of codes, TransRate performs remarkably
well in extensive evaluations on 22 pre-trained models and 16 downstream tasks.
Related papers
- Efficient Transferability Assessment for Selection of Pre-trained Detectors [63.21514888618542]
This paper studies the efficient transferability assessment of pre-trained object detectors.
We build up a detector transferability benchmark which contains a large and diverse zoo of pre-trained detectors.
Experimental results demonstrate that our method outperforms other state-of-the-art approaches in assessing transferability.
arXiv Detail & Related papers (2024-03-14T14:23:23Z) - Robust Transfer Learning with Unreliable Source Data [13.276850367115333]
We introduce a novel quantity called the ''ambiguity level'' that measures the discrepancy between the target and source regression functions.
We propose a simple transfer learning procedure, and establish a general theorem that shows how this new quantity is related to the transferability of learning.
arXiv Detail & Related papers (2023-10-06T21:50:21Z) - Optimal transfer protocol by incremental layer defrosting [66.76153955485584]
Transfer learning is a powerful tool enabling model training with limited amounts of data.
The simplest transfer learning protocol is based on freezing" the feature-extractor layers of a network pre-trained on a data-rich source task.
We show that this protocol is often sub-optimal and the largest performance gain may be achieved when smaller portions of the pre-trained network are kept frozen.
arXiv Detail & Related papers (2023-03-02T17:32:11Z) - Transferability Estimation Based On Principal Gradient Expectation [68.97403769157117]
Cross-task transferability is compatible with transferred results while keeping self-consistency.
Existing transferability metrics are estimated on the particular model by conversing source and target tasks.
We propose Principal Gradient Expectation (PGE), a simple yet effective method for assessing transferability across tasks.
arXiv Detail & Related papers (2022-11-29T15:33:02Z) - Estimation and inference for transfer learning with high-dimensional
quantile regression [3.4510296013600374]
We propose a transfer learning procedure in the framework of high-dimensional quantile regression models.
We establish error bounds of transfer learning estimator based on delicately selected transferable source domains.
By adopting data-splitting technique, we advocate a transferability detection approach that guarantees to circumvent negative transfer.
arXiv Detail & Related papers (2022-11-26T14:40:19Z) - An Exploration of Data Efficiency in Intra-Dataset Task Transfer for
Dialog Understanding [65.75873687351553]
This study explores the effects of varying quantities of target task training data on sequential transfer learning in the dialog domain.
Unintuitively, our data shows that often target task training data size has minimal effect on how sequential transfer learning performs compared to the same model without transfer learning.
arXiv Detail & Related papers (2022-10-21T04:36:46Z) - Identifying Suitable Tasks for Inductive Transfer Through the Analysis
of Feature Attributions [78.55044112903148]
We use explainability techniques to predict whether task pairs will be complementary, through comparison of neural network activation between single-task models.
Our results show that, through this approach, it is possible to reduce training time by up to 83.5% at a cost of only 0.034 reduction in positive-class F1 on the TREC-IS 2020-A dataset.
arXiv Detail & Related papers (2022-02-02T15:51:07Z) - Transferability Estimation for Semantic Segmentation Task [20.07223947190349]
We extend the recent transferability metric OTCE score to the semantic segmentation task.
The challenge in applying the OTCE score is the high dimensional segmentation output, which is difficult to find the optimal coupling between so many pixels under an acceptable cost.
Experimental evaluation on Cityscapes, BDD100K and GTA5 datasets demonstrates that the OTCE score highly correlates with the transfer performance.
arXiv Detail & Related papers (2021-09-30T16:21:17Z) - Practical Transferability Estimation for Image Classification Tasks [20.07223947190349]
A major challenge is how to make transfereability estimation robust under the cross-domain cross-task settings.
The recently proposed OTCE score solves this problem by considering both domain and task differences.
We propose a practical transferability metric called JC-NCE score that dramatically improves the robustness of the task difference estimation.
arXiv Detail & Related papers (2021-06-19T11:59:11Z) - CARTL: Cooperative Adversarially-Robust Transfer Learning [22.943270371841226]
In deep learning, a typical strategy for transfer learning is to freeze the early layers of a pre-trained model and fine-tune the rest of its layers on the target domain.
We propose a novel cooperative adversarially-robust transfer learning (CARTL) by pre-training the model via feature distance minimization and fine-tuning the pre-trained model with non-expansive fine-tuning for target domain tasks.
arXiv Detail & Related papers (2021-06-12T02:29:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.