Transferability Estimation Based On Principal Gradient Expectation
- URL: http://arxiv.org/abs/2211.16299v2
- Date: Wed, 30 Nov 2022 02:01:37 GMT
- Title: Transferability Estimation Based On Principal Gradient Expectation
- Authors: Huiyan Qi, Lechao Cheng, Jingjing Chen, Yue Yu, Zunlei Feng, Yu-Gang
Jiang
- Abstract summary: Cross-task transferability is compatible with transferred results while keeping self-consistency.
Existing transferability metrics are estimated on the particular model by conversing source and target tasks.
We propose Principal Gradient Expectation (PGE), a simple yet effective method for assessing transferability across tasks.
- Score: 68.97403769157117
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep transfer learning has been widely used for knowledge transmission in
recent years. The standard approach of pre-training and subsequently
fine-tuning, or linear probing, has shown itself to be effective in many
down-stream tasks. Therefore, a challenging and ongoing question arises: how to
quantify cross-task transferability that is compatible with transferred results
while keeping self-consistency? Existing transferability metrics are estimated
on the particular model by conversing source and target tasks. They must be
recalculated with all existing source tasks whenever a novel unknown target
task is encountered, which is extremely computationally expensive. In this
work, we highlight what properties should be satisfied and evaluate existing
metrics in light of these characteristics. Building upon this, we propose
Principal Gradient Expectation (PGE), a simple yet effective method for
assessing transferability across tasks. Specifically, we use a restart scheme
to calculate every batch gradient over each weight unit more than once, and
then we take the average of all the gradients to get the expectation. Thus, the
transferability between the source and target task is estimated by computing
the distance of normalized principal gradients. Extensive experiments show that
the proposed transferability metric is more stable, reliable and efficient than
SOTA methods.
Related papers
- ForkMerge: Mitigating Negative Transfer in Auxiliary-Task Learning [59.08197876733052]
Auxiliary-Task Learning (ATL) aims to improve the performance of the target task by leveraging the knowledge obtained from related tasks.
Sometimes, learning multiple tasks simultaneously results in lower accuracy than learning only the target task, known as negative transfer.
ForkMerge is a novel approach that periodically forks the model into multiple branches, automatically searches the varying task weights.
arXiv Detail & Related papers (2023-01-30T02:27:02Z) - Towards Estimating Transferability using Hard Subsets [25.86053764521497]
We propose HASTE, a new strategy to estimate the transferability of a source model to a particular target task using only a harder subset of target data.
We show that HASTE can be used with any existing transferability metric to improve their reliability.
Our experimental results across multiple source model architectures, target datasets, and transfer learning tasks show that HASTE modified metrics are consistently better or on par with the state of the art transferability metrics.
arXiv Detail & Related papers (2023-01-17T14:50:18Z) - An Information-Theoretic Approach to Transferability in Task Transfer
Learning [16.05523977032659]
Task transfer learning is a popular technique in image processing applications that uses pre-trained models to reduce the supervision cost of related tasks.
We present a novel metric, H-score, that estimates the performance of transferred representations from one task to another in classification problems.
arXiv Detail & Related papers (2022-12-20T08:47:17Z) - Transferability Estimation for Semantic Segmentation Task [20.07223947190349]
We extend the recent transferability metric OTCE score to the semantic segmentation task.
The challenge in applying the OTCE score is the high dimensional segmentation output, which is difficult to find the optimal coupling between so many pixels under an acceptable cost.
Experimental evaluation on Cityscapes, BDD100K and GTA5 datasets demonstrates that the OTCE score highly correlates with the transfer performance.
arXiv Detail & Related papers (2021-09-30T16:21:17Z) - Practical Transferability Estimation for Image Classification Tasks [20.07223947190349]
A major challenge is how to make transfereability estimation robust under the cross-domain cross-task settings.
The recently proposed OTCE score solves this problem by considering both domain and task differences.
We propose a practical transferability metric called JC-NCE score that dramatically improves the robustness of the task difference estimation.
arXiv Detail & Related papers (2021-06-19T11:59:11Z) - Frustratingly Easy Transferability Estimation [64.42879325144439]
We propose a simple, efficient, and effective transferability measure named TransRate.
TransRate measures the transferability as the mutual information between the features of target examples extracted by a pre-trained model and labels of them.
Despite its extraordinary simplicity in 10 lines of codes, TransRate performs remarkably well in extensive evaluations on 22 pre-trained models and 16 downstream tasks.
arXiv Detail & Related papers (2021-06-17T10:27:52Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z) - Uniform Priors for Data-Efficient Transfer [65.086680950871]
We show that features that are most transferable have high uniformity in the embedding space.
We evaluate the regularization on its ability to facilitate adaptation to unseen tasks and data.
arXiv Detail & Related papers (2020-06-30T04:39:36Z) - Exploring and Predicting Transferability across NLP Tasks [115.6278033699853]
We study the transferability between 33 NLP tasks across three broad classes of problems.
Our results show that transfer learning is more beneficial than previously thought.
We also develop task embeddings that can be used to predict the most transferable source tasks for a given target task.
arXiv Detail & Related papers (2020-05-02T09:39:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.