NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go
- URL: http://arxiv.org/abs/2106.09431v1
- Date: Thu, 17 Jun 2021 12:25:44 GMT
- Title: NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go
- Authors: Marvin Eisenberger, David Novotny, Gael Kerchenbaum, Patrick Labatut,
Natalia Neverova, Daniel Cremers, Andrea Vedaldi
- Abstract summary: We present NeuroMorph, a new neural network architecture that takes as input two 3D shapes.
NeuroMorph produces smooth and point-to-point correspondences between them.
It works well for a large variety of input shapes, including non-isometric pairs from different object categories.
- Score: 109.88509362837475
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present NeuroMorph, a new neural network architecture that takes as input
two 3D shapes and produces in one go, i.e. in a single feed forward pass, a
smooth interpolation and point-to-point correspondences between them. The
interpolation, expressed as a deformation field, changes the pose of the source
shape to resemble the target, but leaves the object identity unchanged.
NeuroMorph uses an elegant architecture combining graph convolutions with
global feature pooling to extract local features. During training, the model is
incentivized to create realistic deformations by approximating geodesics on the
underlying shape space manifold. This strong geometric prior allows to train
our model end-to-end and in a fully unsupervised manner without requiring any
manual correspondence annotations. NeuroMorph works well for a large variety of
input shapes, including non-isometric pairs from different object categories.
It obtains state-of-the-art results for both shape correspondence and
interpolation tasks, matching or surpassing the performance of recent
unsupervised and supervised methods on multiple benchmarks.
Related papers
- Equi-GSPR: Equivariant SE(3) Graph Network Model for Sparse Point Cloud Registration [2.814748676983944]
We propose a graph neural network model embedded with a local Spherical Euclidean 3D equivariance property through SE(3) message passing based propagation.
Our model is composed mainly of a descriptor module, equivariant graph layers, match similarity, and the final regression layers.
Experiments conducted on the 3DMatch and KITTI datasets exhibit the compelling and robust performance of our model compared to state-of-the-art approaches.
arXiv Detail & Related papers (2024-10-08T06:48:01Z) - Zero-Shot 3D Shape Correspondence [67.18775201037732]
We propose a novel zero-shot approach to computing correspondences between 3D shapes.
We exploit the exceptional reasoning capabilities of recent foundation models in language and vision.
Our approach produces highly plausible results in a zero-shot manner, especially between strongly non-isometric shapes.
arXiv Detail & Related papers (2023-06-05T21:14:23Z) - G-MSM: Unsupervised Multi-Shape Matching with Graph-based Affinity
Priors [52.646396621449]
G-MSM is a novel unsupervised learning approach for non-rigid shape correspondence.
We construct an affinity graph on a given set of training shapes in a self-supervised manner.
We demonstrate state-of-the-art performance on several recent shape correspondence benchmarks.
arXiv Detail & Related papers (2022-12-06T12:09:24Z) - U-mesh: Human Correspondence Matching with Mesh Convolutional Networks [15.828285556159026]
We propose an elegant fusion of regression (bottom-up) and generative (top-down) methods to fit a parametric template model to raw scan meshes.
Our first major contribution is an intrinsic convolutional mesh U-net architecture that predicts pointwise correspondence to a template surface.
We evaluate the proposed method on the FAUST correspondence challenge where we achieve 20% (33%) improvement over state of the art methods for inter- (intra-) subject correspondence.
arXiv Detail & Related papers (2021-08-15T08:58:45Z) - Real-time Pose and Shape Reconstruction of Two Interacting Hands With a
Single Depth Camera [79.41374930171469]
We present a novel method for real-time pose and shape reconstruction of two strongly interacting hands.
Our approach combines an extensive list of favorable properties, namely it is marker-less.
We show state-of-the-art results in scenes that exceed the complexity level demonstrated by previous work.
arXiv Detail & Related papers (2021-06-15T11:39:49Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
We propose a primal-dual framework drawn from the graph-neural-network literature to triangle meshes.
Our method takes features for both edges and faces of a 3D mesh as input and dynamically aggregates them.
We provide theoretical insights of our approach using tools from the mesh-simplification literature.
arXiv Detail & Related papers (2020-10-23T14:49:02Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
Recent works succeed in regression-based methods which estimate parametric models directly through a deep neural network supervised by 3D ground truth.
In this paper, we introduce body segmentation as critical supervision.
To improve the reconstruction with part segmentation, we propose a part-level differentiable part that enables part-based models to be supervised by part segmentation.
arXiv Detail & Related papers (2020-03-24T14:25:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.