Combining Neural Fields and Deformation Models for Non-Rigid 3D Motion Reconstruction from Partial Data
- URL: http://arxiv.org/abs/2412.08511v1
- Date: Wed, 11 Dec 2024 16:24:08 GMT
- Title: Combining Neural Fields and Deformation Models for Non-Rigid 3D Motion Reconstruction from Partial Data
- Authors: Aymen Merrouche, Stefanie Wuhrer, Edmond Boyer,
- Abstract summary: We introduce a novel, data-driven approach for reconstructing temporally coherent 3D motion from unstructured observations of non-rigidly deforming shapes.
Our goal is to achieve high-fidelity motion reconstructions for shapes that undergo near-isometric deformations, such as humans wearing loose clothing.
Our method outperforms state-of-the-art approaches, as demonstrated by its application to human and animal motion sequences reconstructed from monocular depth videos.
- Score: 7.327850781641328
- License:
- Abstract: We introduce a novel, data-driven approach for reconstructing temporally coherent 3D motion from unstructured and potentially partial observations of non-rigidly deforming shapes. Our goal is to achieve high-fidelity motion reconstructions for shapes that undergo near-isometric deformations, such as humans wearing loose clothing. The key novelty of our work lies in its ability to combine implicit shape representations with explicit mesh-based deformation models, enabling detailed and temporally coherent motion reconstructions without relying on parametric shape models or decoupling shape and motion. Each frame is represented as a neural field decoded from a feature space where observations over time are fused, hence preserving geometric details present in the input data. Temporal coherence is enforced with a near-isometric deformation constraint between adjacent frames that applies to the underlying surface in the neural field. Our method outperforms state-of-the-art approaches, as demonstrated by its application to human and animal motion sequences reconstructed from monocular depth videos.
Related papers
- Unsupervised 3D Pose Estimation with Non-Rigid Structure-from-Motion
Modeling [83.76377808476039]
We propose a new modeling method for human pose deformations and design an accompanying diffusion-based motion prior.
Inspired by the field of non-rigid structure-from-motion, we divide the task of reconstructing 3D human skeletons in motion into the estimation of a 3D reference skeleton.
A mixed spatial-temporal NRSfMformer is used to simultaneously estimate the 3D reference skeleton and the skeleton deformation of each frame from 2D observations sequence.
arXiv Detail & Related papers (2023-08-18T16:41:57Z) - SceNeRFlow: Time-Consistent Reconstruction of General Dynamic Scenes [75.9110646062442]
We propose SceNeRFlow to reconstruct a general, non-rigid scene in a time-consistent manner.
Our method takes multi-view RGB videos and background images from static cameras with known camera parameters as input.
We show experimentally that, unlike prior work that only handles small motion, our method enables the reconstruction of studio-scale motions.
arXiv Detail & Related papers (2023-08-16T09:50:35Z) - Dynamic Point Fields [30.029872787758705]
We present a dynamic point field model that combines the representational benefits of explicit point-based graphics with implicit deformation networks.
We show the advantages of our dynamic point field framework in terms of its representational power, learning efficiency, and robustness to out-of-distribution novel poses.
arXiv Detail & Related papers (2023-04-05T17:52:37Z) - Controllable GAN Synthesis Using Non-Rigid Structure-from-Motion [1.7205106391379026]
We present an approach for combining non-rigid structure-from-motion (NRSfM) with deep generative models.
We propose an efficient framework for discovering trajectories in the latent space of 2D GANs corresponding to changes in 3D geometry.
arXiv Detail & Related papers (2022-11-14T08:37:55Z) - Animatable Implicit Neural Representations for Creating Realistic
Avatars from Videos [63.16888987770885]
This paper addresses the challenge of reconstructing an animatable human model from a multi-view video.
We introduce a pose-driven deformation field based on the linear blend skinning algorithm.
We show that our approach significantly outperforms recent human modeling methods.
arXiv Detail & Related papers (2022-03-15T17:56:59Z) - SPAMs: Structured Implicit Parametric Models [30.19414242608965]
We learn Structured-implicit PArametric Models (SPAMs) as a deformable object representation that structurally decomposes non-rigid object motion into part-based disentangled representations of shape and pose.
Experiments demonstrate that our part-aware shape and pose understanding lead to state-of-the-art performance in reconstruction and tracking of depth sequences of complex deforming object motion.
arXiv Detail & Related papers (2022-01-20T12:33:46Z) - Identity-Disentangled Neural Deformation Model for Dynamic Meshes [8.826835863410109]
We learn a neural deformation model that disentangles identity-induced shape variations from pose-dependent deformations using implicit neural functions.
We propose two methods to integrate global pose alignment with our neural deformation model.
Our method also outperforms traditional skeleton-driven models in reconstructing surface details such as palm prints or tendons without limitations from a fixed template.
arXiv Detail & Related papers (2021-09-30T17:43:06Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
We present NeuroMorph, a new neural network architecture that takes as input two 3D shapes.
NeuroMorph produces smooth and point-to-point correspondences between them.
It works well for a large variety of input shapes, including non-isometric pairs from different object categories.
arXiv Detail & Related papers (2021-06-17T12:25:44Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) problem aims to recover 3D geometry of a deforming object from its 2D feature correspondences across multiple frames.
We show that our approach significantly improves accuracy, scalability, and robustness against noise.
arXiv Detail & Related papers (2020-06-15T09:15:54Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
Recent works succeed in regression-based methods which estimate parametric models directly through a deep neural network supervised by 3D ground truth.
In this paper, we introduce body segmentation as critical supervision.
To improve the reconstruction with part segmentation, we propose a part-level differentiable part that enables part-based models to be supervised by part segmentation.
arXiv Detail & Related papers (2020-03-24T14:25:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.