MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data
- URL: http://arxiv.org/abs/2106.09643v1
- Date: Thu, 17 Jun 2021 16:42:50 GMT
- Title: MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data
- Authors: Arpit Bansal, Micah Goldblum, Valeriia Cherepanova, Avi Schwarzschild,
C. Bayan Bruss, Tom Goldstein
- Abstract summary: Class-imbalanced data, in which some classes contain far more samples than others, is ubiquitous in real-world applications.
Standard techniques for handling class-imbalance usually work by training on a re-weighted loss or on re-balanced data.
We evaluate our method, MetaBalance, on image classification, credit-card fraud detection, loan default prediction, and facial recognition tasks with severely imbalanced data.
- Score: 42.81296448544681
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Class-imbalanced data, in which some classes contain far more samples than
others, is ubiquitous in real-world applications. Standard techniques for
handling class-imbalance usually work by training on a re-weighted loss or on
re-balanced data. Unfortunately, training overparameterized neural networks on
such objectives causes rapid memorization of minority class data. To avoid this
trap, we harness meta-learning, which uses both an ''outer-loop'' and an
''inner-loop'' loss, each of which may be balanced using different strategies.
We evaluate our method, MetaBalance, on image classification, credit-card fraud
detection, loan default prediction, and facial recognition tasks with severely
imbalanced data, and we find that MetaBalance outperforms a wide array of
popular re-sampling strategies.
Related papers
- Meta-GCN: A Dynamically Weighted Loss Minimization Method for Dealing with the Data Imbalance in Graph Neural Networks [5.285761906707429]
We propose a meta-learning algorithm, named Meta-GCN, for adaptively learning the example weights.
We have shown that Meta-GCN outperforms state-of-the-art frameworks and other baselines in terms of accuracy.
arXiv Detail & Related papers (2024-06-24T18:59:24Z) - Simplifying Neural Network Training Under Class Imbalance [77.39968702907817]
Real-world datasets are often highly class-imbalanced, which can adversely impact the performance of deep learning models.
The majority of research on training neural networks under class imbalance has focused on specialized loss functions, sampling techniques, or two-stage training procedures.
We demonstrate that simply tuning existing components of standard deep learning pipelines, such as the batch size, data augmentation, and label smoothing, can achieve state-of-the-art performance without any such specialized class imbalance methods.
arXiv Detail & Related papers (2023-12-05T05:52:44Z) - Learning to Re-weight Examples with Optimal Transport for Imbalanced
Classification [74.62203971625173]
Imbalanced data pose challenges for deep learning based classification models.
One of the most widely-used approaches for tackling imbalanced data is re-weighting.
We propose a novel re-weighting method based on optimal transport (OT) from a distributional point of view.
arXiv Detail & Related papers (2022-08-05T01:23:54Z) - Neural Collapse Inspired Attraction-Repulsion-Balanced Loss for
Imbalanced Learning [97.81549071978789]
We propose Attraction-Repulsion-Balanced Loss (ARB-Loss) to balance the different components of the gradients.
We perform experiments on the large-scale classification and segmentation datasets and our ARB-Loss can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-04-19T08:23:23Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - Delving into Sample Loss Curve to Embrace Noisy and Imbalanced Data [17.7825114228313]
Corrupted labels and class imbalance are commonly encountered in practically collected training data.
Existing approaches alleviate these issues by adopting a sample re-weighting strategy.
However, biased samples with corrupted labels and of tailed classes commonly co-exist in training data.
arXiv Detail & Related papers (2021-12-30T09:20:07Z) - Few-Shot Learning with Class Imbalance [13.60699610822265]
Few-shot learning aims to train models on a limited number of labeled samples given in a support set in order to generalize to unseen samples from a query set.
In the standard setup, the support set contains an equal amount of data points for each class.
We present a detailed study of few-shot class-imbalance along three axes: meta-dataset vs. task imbalance, effect of different imbalance distributions (linear, step, random), and effect of rebalancing techniques.
arXiv Detail & Related papers (2021-01-07T12:54:32Z) - Class-Wise Difficulty-Balanced Loss for Solving Class-Imbalance [6.875312133832079]
We propose a novel loss function named Class-wise Difficulty-Balanced loss.
It dynamically distributes weights to each sample according to the difficulty of the class that the sample belongs to.
The results show that CDB loss consistently outperforms the recently proposed loss functions on class-imbalanced datasets.
arXiv Detail & Related papers (2020-10-05T07:19:19Z) - M2m: Imbalanced Classification via Major-to-minor Translation [79.09018382489506]
In most real-world scenarios, labeled training datasets are highly class-imbalanced, where deep neural networks suffer from generalizing to a balanced testing criterion.
In this paper, we explore a novel yet simple way to alleviate this issue by augmenting less-frequent classes via translating samples from more-frequent classes.
Our experimental results on a variety of class-imbalanced datasets show that the proposed method improves the generalization on minority classes significantly compared to other existing re-sampling or re-weighting methods.
arXiv Detail & Related papers (2020-04-01T13:21:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.