Meta-GCN: A Dynamically Weighted Loss Minimization Method for Dealing with the Data Imbalance in Graph Neural Networks
- URL: http://arxiv.org/abs/2406.17073v2
- Date: Thu, 27 Jun 2024 18:15:16 GMT
- Title: Meta-GCN: A Dynamically Weighted Loss Minimization Method for Dealing with the Data Imbalance in Graph Neural Networks
- Authors: Mahdi Mohammadizadeh, Arash Mozhdehi, Yani Ioannou, Xin Wang,
- Abstract summary: We propose a meta-learning algorithm, named Meta-GCN, for adaptively learning the example weights.
We have shown that Meta-GCN outperforms state-of-the-art frameworks and other baselines in terms of accuracy.
- Score: 5.285761906707429
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although many real-world applications, such as disease prediction, and fault detection suffer from class imbalance, most existing graph-based classification methods ignore the skewness of the distribution of classes; therefore, tend to be biased towards the majority class(es). Conventional methods typically tackle this problem through the assignment of weights to each one of the class samples based on a function of their loss, which can lead to over-fitting on outliers. In this paper, we propose a meta-learning algorithm, named Meta-GCN, for adaptively learning the example weights by simultaneously minimizing the unbiased meta-data set loss and optimizing the model weights through the use of a small unbiased meta-data set. Through experiments, we have shown that Meta-GCN outperforms state-of-the-art frameworks and other baselines in terms of accuracy, the area under the receiver operating characteristic (AUC-ROC) curve, and macro F1-Score for classification tasks on two different datasets.
Related papers
- Marginal Debiased Network for Fair Visual Recognition [59.05212866862219]
We propose a novel marginal debiased network (MDN) to learn debiased representations.
Our MDN can achieve a remarkable performance on under-represented samples.
arXiv Detail & Related papers (2024-01-04T08:57:09Z) - A Unified Generalization Analysis of Re-Weighting and Logit-Adjustment
for Imbalanced Learning [129.63326990812234]
We propose a technique named data-dependent contraction to capture how modified losses handle different classes.
On top of this technique, a fine-grained generalization bound is established for imbalanced learning, which helps reveal the mystery of re-weighting and logit-adjustment.
arXiv Detail & Related papers (2023-10-07T09:15:08Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Dynamic Loss For Robust Learning [17.33444812274523]
This work presents a novel meta-learning based dynamic loss that automatically adjusts the objective functions with the training process to robustly learn a classifier from long-tailed noisy data.
Our method achieves state-of-the-art accuracy on multiple real-world and synthetic datasets with various types of data biases, including CIFAR-10/100, Animal-10N, ImageNet-LT, and Webvision.
arXiv Detail & Related papers (2022-11-22T01:48:25Z) - Imbalanced Nodes Classification for Graph Neural Networks Based on
Valuable Sample Mining [9.156427521259195]
A new loss function FD-Loss is reconstructed based on the traditional algorithm-level approach to the imbalance problem.
Our loss function can effectively solve the sample node imbalance problem and improve the classification accuracy by 4% compared to existing methods in the node classification task.
arXiv Detail & Related papers (2022-09-18T09:22:32Z) - Learning to Re-weight Examples with Optimal Transport for Imbalanced
Classification [74.62203971625173]
Imbalanced data pose challenges for deep learning based classification models.
One of the most widely-used approaches for tackling imbalanced data is re-weighting.
We propose a novel re-weighting method based on optimal transport (OT) from a distributional point of view.
arXiv Detail & Related papers (2022-08-05T01:23:54Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data [42.81296448544681]
Class-imbalanced data, in which some classes contain far more samples than others, is ubiquitous in real-world applications.
Standard techniques for handling class-imbalance usually work by training on a re-weighted loss or on re-balanced data.
We evaluate our method, MetaBalance, on image classification, credit-card fraud detection, loan default prediction, and facial recognition tasks with severely imbalanced data.
arXiv Detail & Related papers (2021-06-17T16:42:50Z) - Evolving parametrized Loss for Image Classification Learning on Small
Datasets [1.4685355149711303]
This paper proposes a meta-learning approach to evolving a parametrized loss function, which is called Meta-Loss Network (MLN)
In our approach, the MLN is embedded in the framework of classification learning as a differentiable objective function.
Experiment results demonstrate that the MLN effectively improved generalization compared to classical cross-entropy error and mean squared error.
arXiv Detail & Related papers (2021-03-15T10:00:18Z) - Label-Imbalanced and Group-Sensitive Classification under
Overparameterization [32.923780772605596]
Label-imbalanced and group-sensitive classification seeks to appropriately modify standard training algorithms to optimize relevant metrics.
We show that a logit-adjusted loss modification to standard empirical risk minimization might be ineffective in general.
We show that our results extend naturally to binary classification with sensitive groups, thus treating the two common types of imbalances (label/group) in a unifying way.
arXiv Detail & Related papers (2021-03-02T08:09:43Z) - Revisiting LSTM Networks for Semi-Supervised Text Classification via
Mixed Objective Function [106.69643619725652]
We develop a training strategy that allows even a simple BiLSTM model, when trained with cross-entropy loss, to achieve competitive results.
We report state-of-the-art results for text classification task on several benchmark datasets.
arXiv Detail & Related papers (2020-09-08T21:55:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.