BinarizedAttack: Structural Poisoning Attacks to Graph-based Anomaly
Detection
- URL: http://arxiv.org/abs/2106.09989v2
- Date: Mon, 21 Jun 2021 08:14:07 GMT
- Title: BinarizedAttack: Structural Poisoning Attacks to Graph-based Anomaly
Detection
- Authors: Yulin Zhu, Yuni Lai, Kaifa Zhao, Xiapu Luo, Mingquan Yuan, Jian Ren,
Kai Zhou
- Abstract summary: Graph-based Anomaly Detection (GAD) is becoming prevalent due to the powerful representation abilities of graphs.
These GAD tools expose a new attacking surface, ironically due to their unique advantage of being able to exploit the relations among data.
In this paper, we exploit this vulnerability by designing a new type of targeted structural poisoning attacks to a representative regression-based GAD system OddBall.
- Score: 20.666171188140503
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph-based Anomaly Detection (GAD) is becoming prevalent due to the powerful
representation abilities of graphs as well as recent advances in graph mining
techniques. These GAD tools, however, expose a new attacking surface,
ironically due to their unique advantage of being able to exploit the relations
among data. That is, attackers now can manipulate those relations (i.e., the
structure of the graph) to allow some target nodes to evade detection. In this
paper, we exploit this vulnerability by designing a new type of targeted
structural poisoning attacks to a representative regression-based GAD system
termed OddBall. Specially, we formulate the attack against OddBall as a
bi-level optimization problem, where the key technical challenge is to
efficiently solve the problem in a discrete domain. We propose a novel attack
method termed BinarizedAttack based on gradient descent. Comparing to prior
arts, BinarizedAttack can better use the gradient information, making it
particularly suitable for solving combinatorial optimization problems.
Furthermore, we investigate the attack transferability of BinarizedAttack by
employing it to attack other representation-learning-based GAD systems. Our
comprehensive experiments demonstrate that BinarizedAttack is very effective in
enabling target nodes to evade graph-based anomaly detection tools with limited
attackers' budget, and in the black-box transfer attack setting,
BinarizedAttack is also tested effective and in particular, can significantly
change the node embeddings learned by the GAD systems. Our research thus opens
the door to studying a new type of attack against security analytic tools that
rely on graph data.
Related papers
- Top K Enhanced Reinforcement Learning Attacks on Heterogeneous Graph Node Classification [1.4943280454145231]
Graph Neural Networks (GNNs) have attracted substantial interest due to their exceptional performance on graph-based data.
Their robustness, especially on heterogeneous graphs, remains underexplored, particularly against adversarial attacks.
This paper proposes HeteroKRLAttack, a targeted evasion black-box attack method for heterogeneous graphs.
arXiv Detail & Related papers (2024-08-04T08:44:00Z) - Everything Perturbed All at Once: Enabling Differentiable Graph Attacks [61.61327182050706]
Graph neural networks (GNNs) have been shown to be vulnerable to adversarial attacks.
We propose a novel attack method called Differentiable Graph Attack (DGA) to efficiently generate effective attacks.
Compared to the state-of-the-art, DGA achieves nearly equivalent attack performance with 6 times less training time and 11 times smaller GPU memory footprint.
arXiv Detail & Related papers (2023-08-29T20:14:42Z) - EDoG: Adversarial Edge Detection For Graph Neural Networks [17.969573886307906]
Graph Neural Networks (GNNs) have been widely applied to different tasks such as bioinformatics, drug design, and social networks.
Recent studies have shown that GNNs are vulnerable to adversarial attacks which aim to mislead the node or subgraph classification prediction by adding subtle perturbations.
We propose a general adversarial edge detection pipeline EDoG without requiring knowledge of the attack strategies based on graph generation.
arXiv Detail & Related papers (2022-12-27T20:42:36Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
Recent studies show that Graph Neural Networks are vulnerable and easily fooled by small perturbations.
In this work, we focus on the emerging but critical attack, namely, Graph Injection Attack.
We propose a general defense framework CHAGNN against GIA through cooperative homophilous augmentation of graph data and model.
arXiv Detail & Related papers (2022-11-15T11:44:31Z) - What Does the Gradient Tell When Attacking the Graph Structure [44.44204591087092]
We present a theoretical demonstration revealing that attackers tend to increase inter-class edges due to the message passing mechanism of GNNs.
By connecting dissimilar nodes, attackers can more effectively corrupt node features, making such attacks more advantageous.
We propose an innovative attack loss that balances attack effectiveness and imperceptibility, sacrificing some attack effectiveness to attain greater imperceptibility.
arXiv Detail & Related papers (2022-08-26T15:45:20Z) - A Hard Label Black-box Adversarial Attack Against Graph Neural Networks [25.081630882605985]
We conduct a systematic study on adversarial attacks against GNNs for graph classification via perturbing the graph structure.
We formulate our attack as an optimization problem, whose objective is to minimize the number of edges to be perturbed in a graph while maintaining the high attack success rate.
Our experimental results on three real-world datasets demonstrate that our attack can effectively attack representative GNNs for graph classification with less queries and perturbations.
arXiv Detail & Related papers (2021-08-21T14:01:34Z) - GraphAttacker: A General Multi-Task GraphAttack Framework [4.218118583619758]
Graph Neural Networks (GNNs) have been successfully exploited in graph analysis tasks in many real-world applications.
adversarial samples generated by attackers, which achieved great attack performance with almost imperceptible perturbations.
We propose GraphAttacker, a novel generic graph attack framework that can flexibly adjust the structures and the attack strategies according to the graph analysis tasks.
arXiv Detail & Related papers (2021-01-18T03:06:41Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z) - Adversarial Attack on Large Scale Graph [58.741365277995044]
Recent studies have shown that graph neural networks (GNNs) are vulnerable against perturbations due to lack of robustness.
Currently, most works on attacking GNNs are mainly using gradient information to guide the attack and achieve outstanding performance.
We argue that the main reason is that they have to use the whole graph for attacks, resulting in the increasing time and space complexity as the data scale grows.
We present a practical metric named Degree Assortativity Change (DAC) to measure the impacts of adversarial attacks on graph data.
arXiv Detail & Related papers (2020-09-08T02:17:55Z) - Reinforcement Learning-based Black-Box Evasion Attacks to Link
Prediction in Dynamic Graphs [87.5882042724041]
Link prediction in dynamic graphs (LPDG) is an important research problem that has diverse applications.
We study the vulnerability of LPDG methods and propose the first practical black-box evasion attack.
arXiv Detail & Related papers (2020-09-01T01:04:49Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.