Top K Enhanced Reinforcement Learning Attacks on Heterogeneous Graph Node Classification
- URL: http://arxiv.org/abs/2408.01964v1
- Date: Sun, 4 Aug 2024 08:44:00 GMT
- Title: Top K Enhanced Reinforcement Learning Attacks on Heterogeneous Graph Node Classification
- Authors: Honglin Gao, Gaoxi Xiao,
- Abstract summary: Graph Neural Networks (GNNs) have attracted substantial interest due to their exceptional performance on graph-based data.
Their robustness, especially on heterogeneous graphs, remains underexplored, particularly against adversarial attacks.
This paper proposes HeteroKRLAttack, a targeted evasion black-box attack method for heterogeneous graphs.
- Score: 1.4943280454145231
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have attracted substantial interest due to their exceptional performance on graph-based data. However, their robustness, especially on heterogeneous graphs, remains underexplored, particularly against adversarial attacks. This paper proposes HeteroKRLAttack, a targeted evasion black-box attack method for heterogeneous graphs. By integrating reinforcement learning with a Top-K algorithm to reduce the action space, our method efficiently identifies effective attack strategies to disrupt node classification tasks. We validate the effectiveness of HeteroKRLAttack through experiments on multiple heterogeneous graph datasets, showing significant reductions in classification accuracy compared to baseline methods. An ablation study underscores the critical role of the Top-K algorithm in enhancing attack performance. Our findings highlight potential vulnerabilities in current models and provide guidance for future defense strategies against adversarial attacks on heterogeneous graphs.
Related papers
- Graph Transductive Defense: a Two-Stage Defense for Graph Membership Inference Attacks [50.19590901147213]
Graph neural networks (GNNs) have become instrumental in diverse real-world applications, offering powerful graph learning capabilities.
GNNs are vulnerable to adversarial attacks, including membership inference attacks (MIA)
This paper proposes an effective two-stage defense, Graph Transductive Defense (GTD), tailored to graph transductive learning characteristics.
arXiv Detail & Related papers (2024-06-12T06:36:37Z) - HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
Heterogeneous Graph Neural Networks (HGNNs) are increasingly recognized for their performance in areas like the web and e-commerce.
This paper introduces HGAttack, the first dedicated gray box evasion attack method for heterogeneous graphs.
arXiv Detail & Related papers (2024-01-18T12:47:13Z) - GraphCloak: Safeguarding Task-specific Knowledge within Graph-structured Data from Unauthorized Exploitation [61.80017550099027]
Graph Neural Networks (GNNs) are increasingly prevalent in a variety of fields.
Growing concerns have emerged regarding the unauthorized utilization of personal data.
Recent studies have shown that imperceptible poisoning attacks are an effective method of protecting image data from such misuse.
This paper introduces GraphCloak to safeguard against the unauthorized usage of graph data.
arXiv Detail & Related papers (2023-10-11T00:50:55Z) - Everything Perturbed All at Once: Enabling Differentiable Graph Attacks [61.61327182050706]
Graph neural networks (GNNs) have been shown to be vulnerable to adversarial attacks.
We propose a novel attack method called Differentiable Graph Attack (DGA) to efficiently generate effective attacks.
Compared to the state-of-the-art, DGA achieves nearly equivalent attack performance with 6 times less training time and 11 times smaller GPU memory footprint.
arXiv Detail & Related papers (2023-08-29T20:14:42Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
Recent studies show that Graph Neural Networks are vulnerable and easily fooled by small perturbations.
In this work, we focus on the emerging but critical attack, namely, Graph Injection Attack.
We propose a general defense framework CHAGNN against GIA through cooperative homophilous augmentation of graph data and model.
arXiv Detail & Related papers (2022-11-15T11:44:31Z) - A Hard Label Black-box Adversarial Attack Against Graph Neural Networks [25.081630882605985]
We conduct a systematic study on adversarial attacks against GNNs for graph classification via perturbing the graph structure.
We formulate our attack as an optimization problem, whose objective is to minimize the number of edges to be perturbed in a graph while maintaining the high attack success rate.
Our experimental results on three real-world datasets demonstrate that our attack can effectively attack representative GNNs for graph classification with less queries and perturbations.
arXiv Detail & Related papers (2021-08-21T14:01:34Z) - BinarizedAttack: Structural Poisoning Attacks to Graph-based Anomaly
Detection [20.666171188140503]
Graph-based Anomaly Detection (GAD) is becoming prevalent due to the powerful representation abilities of graphs.
These GAD tools expose a new attacking surface, ironically due to their unique advantage of being able to exploit the relations among data.
In this paper, we exploit this vulnerability by designing a new type of targeted structural poisoning attacks to a representative regression-based GAD system OddBall.
arXiv Detail & Related papers (2021-06-18T08:20:23Z) - Reinforcement Learning-based Black-Box Evasion Attacks to Link
Prediction in Dynamic Graphs [87.5882042724041]
Link prediction in dynamic graphs (LPDG) is an important research problem that has diverse applications.
We study the vulnerability of LPDG methods and propose the first practical black-box evasion attack.
arXiv Detail & Related papers (2020-09-01T01:04:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.