Accumulative Poisoning Attacks on Real-time Data
- URL: http://arxiv.org/abs/2106.09993v1
- Date: Fri, 18 Jun 2021 08:29:53 GMT
- Title: Accumulative Poisoning Attacks on Real-time Data
- Authors: Tianyu Pang, Xiao Yang, Yinpeng Dong, Hang Su, Jun Zhu
- Abstract summary: We show that a well-designed but straightforward attacking strategy can dramatically amplify the poisoning effects.
Our work validates that a well-designed but straightforward attacking strategy can dramatically amplify the poisoning effects.
- Score: 56.96241557830253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collecting training data from untrusted sources exposes machine learning
services to poisoning adversaries, who maliciously manipulate training data to
degrade the model accuracy. When trained on offline datasets, poisoning
adversaries have to inject the poisoned data in advance before training, and
the order of feeding these poisoned batches into the model is stochastic. In
contrast, practical systems are more usually trained/fine-tuned on sequentially
captured real-time data, in which case poisoning adversaries could dynamically
poison each data batch according to the current model state. In this paper, we
focus on the real-time settings and propose a new attacking strategy, which
affiliates an accumulative phase with poisoning attacks to secretly (i.e.,
without affecting accuracy) magnify the destructive effect of a (poisoned)
trigger batch. By mimicking online learning and federated learning on CIFAR-10,
we show that the model accuracy will significantly drop by a single update step
on the trigger batch after the accumulative phase. Our work validates that a
well-designed but straightforward attacking strategy can dramatically amplify
the poisoning effects, with no need to explore complex techniques.
Related papers
- Wicked Oddities: Selectively Poisoning for Effective Clean-Label Backdoor Attacks [11.390175856652856]
Clean-label attacks are a more stealthy form of backdoor attacks that can perform the attack without changing the labels of poisoned data.
We study different strategies for selectively poisoning a small set of training samples in the target class to boost the attack success rate.
Our threat model poses a serious threat in training machine learning models with third-party datasets.
arXiv Detail & Related papers (2024-07-15T15:38:21Z) - PACOL: Poisoning Attacks Against Continual Learners [1.569413950416037]
In this work, we demonstrate that continual learning systems can be manipulated by malicious misinformation.
We present a new category of data poisoning attacks specific for continual learners, which we refer to as em Poisoning Attacks Against Continual learners (PACOL)
A comprehensive set of experiments shows the vulnerability of commonly used generative replay and regularization-based continual learning approaches against attack methods.
arXiv Detail & Related papers (2023-11-18T00:20:57Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
We propose a novel information measure, namely, Memorization Discrepancy, to explore the defense via the model-level information.
By implicitly transferring the changes in the data manipulation to that in the model outputs, Memorization Discrepancy can discover the imperceptible poison samples.
We thoroughly explore its properties and propose Discrepancy-aware Sample Correction (DSC) to defend against accumulative poisoning attacks.
arXiv Detail & Related papers (2023-06-06T14:45:24Z) - Indiscriminate Poisoning Attacks Are Shortcuts [77.38947817228656]
We find that the perturbations of advanced poisoning attacks are almost textbflinear separable when assigned with the target labels of the corresponding samples.
We show that such synthetic perturbations are as powerful as the deliberately crafted attacks.
Our finding suggests that the emphshortcut learning problem is more serious than previously believed.
arXiv Detail & Related papers (2021-11-01T12:44:26Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
We present a previously unrecognized threat to robust machine learning models that highlights the importance of training-data quality.
We propose a novel bilevel optimization-based data poisoning attack that degrades the robustness guarantees of certifiably robust classifiers.
Our attack is effective even when the victim trains the models from scratch using state-of-the-art robust training methods.
arXiv Detail & Related papers (2020-12-02T15:30:21Z) - Witches' Brew: Industrial Scale Data Poisoning via Gradient Matching [56.280018325419896]
Data Poisoning attacks modify training data to maliciously control a model trained on such data.
We analyze a particularly malicious poisoning attack that is both "from scratch" and "clean label"
We show that it is the first poisoning method to cause targeted misclassification in modern deep networks trained from scratch on a full-sized, poisoned ImageNet dataset.
arXiv Detail & Related papers (2020-09-04T16:17:54Z) - Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and
Data Poisoning Attacks [74.88735178536159]
Data poisoning is the number one concern among threats ranging from model stealing to adversarial attacks.
We observe that data poisoning and backdoor attacks are highly sensitive to variations in the testing setup.
We apply rigorous tests to determine the extent to which we should fear them.
arXiv Detail & Related papers (2020-06-22T18:34:08Z) - A Separation Result Between Data-oblivious and Data-aware Poisoning
Attacks [40.044030156696145]
Poisoning attacks have emerged as a significant security threat to machine learning algorithms.
Some of the stronger poisoning attacks require the full knowledge of the training data.
We show that full-information adversaries are provably stronger than the optimal attacker.
arXiv Detail & Related papers (2020-03-26T16:40:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.