Wicked Oddities: Selectively Poisoning for Effective Clean-Label Backdoor Attacks
- URL: http://arxiv.org/abs/2407.10825v2
- Date: Tue, 16 Jul 2024 04:21:12 GMT
- Title: Wicked Oddities: Selectively Poisoning for Effective Clean-Label Backdoor Attacks
- Authors: Quang H. Nguyen, Nguyen Ngoc-Hieu, The-Anh Ta, Thanh Nguyen-Tang, Kok-Seng Wong, Hoang Thanh-Tung, Khoa D. Doan,
- Abstract summary: Clean-label attacks are a more stealthy form of backdoor attacks that can perform the attack without changing the labels of poisoned data.
We study different strategies for selectively poisoning a small set of training samples in the target class to boost the attack success rate.
Our threat model poses a serious threat in training machine learning models with third-party datasets.
- Score: 11.390175856652856
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks are vulnerable to backdoor attacks, a type of adversarial attack that poisons the training data to manipulate the behavior of models trained on such data. Clean-label attacks are a more stealthy form of backdoor attacks that can perform the attack without changing the labels of poisoned data. Early works on clean-label attacks added triggers to a random subset of the training set, ignoring the fact that samples contribute unequally to the attack's success. This results in high poisoning rates and low attack success rates. To alleviate the problem, several supervised learning-based sample selection strategies have been proposed. However, these methods assume access to the entire labeled training set and require training, which is expensive and may not always be practical. This work studies a new and more practical (but also more challenging) threat model where the attacker only provides data for the target class (e.g., in face recognition systems) and has no knowledge of the victim model or any other classes in the training set. We study different strategies for selectively poisoning a small set of training samples in the target class to boost the attack success rate in this setting. Our threat model poses a serious threat in training machine learning models with third-party datasets, since the attack can be performed effectively with limited information. Experiments on benchmark datasets illustrate the effectiveness of our strategies in improving clean-label backdoor attacks.
Related papers
- SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
Modern NLP models are often trained on public datasets drawn from diverse sources.
Data poisoning attacks can manipulate the model's behavior in ways engineered by the attacker.
Several strategies have been proposed to mitigate the risks associated with backdoor attacks.
arXiv Detail & Related papers (2024-05-19T14:50:09Z) - Narcissus: A Practical Clean-Label Backdoor Attack with Limited
Information [22.98039177091884]
"Clean-label" backdoor attacks require knowledge of the entire training set to be effective.
This paper provides an algorithm to mount clean-label backdoor attacks based only on the knowledge of representative examples from the target class.
Our attack works well across datasets and models, even when the trigger presents in the physical world.
arXiv Detail & Related papers (2022-04-11T16:58:04Z) - Adversarial Transfer Attacks With Unknown Data and Class Overlap [19.901933940805684]
Current transfer attack research has an unrealistic advantage for the attacker.
We present the first study of transferring adversarial attacks focusing on the data available to attacker and victim under imperfect settings.
This threat model is relevant to applications in medicine, malware, and others.
arXiv Detail & Related papers (2021-09-23T03:41:34Z) - Accumulative Poisoning Attacks on Real-time Data [56.96241557830253]
We show that a well-designed but straightforward attacking strategy can dramatically amplify the poisoning effects.
Our work validates that a well-designed but straightforward attacking strategy can dramatically amplify the poisoning effects.
arXiv Detail & Related papers (2021-06-18T08:29:53Z) - Manipulating SGD with Data Ordering Attacks [23.639512087220137]
We present a class of training-time attacks that require no changes to the underlying model dataset or architecture.
In particular, an attacker can disrupt the integrity and availability of a model by simply reordering training batches.
Attacks have a long-term impact in that they decrease model performance hundreds of epochs after the attack took place.
arXiv Detail & Related papers (2021-04-19T22:17:27Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
The emphbackdoor attack intends to embed hidden backdoors in deep neural networks (DNNs) by poisoning training data.
We propose a novel attack paradigm, the emphfine-grained attack, where we treat the target label from the object-level instead of the image-level.
Experiments show that the proposed methods can successfully attack semantic segmentation models by poisoning only a small proportion of training data.
arXiv Detail & Related papers (2021-03-06T05:50:29Z) - What Doesn't Kill You Makes You Robust(er): Adversarial Training against
Poisons and Backdoors [57.040948169155925]
We extend the adversarial training framework to defend against (training-time) poisoning and backdoor attacks.
Our method desensitizes networks to the effects of poisoning by creating poisons during training and injecting them into training batches.
We show that this defense withstands adaptive attacks, generalizes to diverse threat models, and incurs a better performance trade-off than previous defenses.
arXiv Detail & Related papers (2021-02-26T17:54:36Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
We present a previously unrecognized threat to robust machine learning models that highlights the importance of training-data quality.
We propose a novel bilevel optimization-based data poisoning attack that degrades the robustness guarantees of certifiably robust classifiers.
Our attack is effective even when the victim trains the models from scratch using state-of-the-art robust training methods.
arXiv Detail & Related papers (2020-12-02T15:30:21Z) - Witches' Brew: Industrial Scale Data Poisoning via Gradient Matching [56.280018325419896]
Data Poisoning attacks modify training data to maliciously control a model trained on such data.
We analyze a particularly malicious poisoning attack that is both "from scratch" and "clean label"
We show that it is the first poisoning method to cause targeted misclassification in modern deep networks trained from scratch on a full-sized, poisoned ImageNet dataset.
arXiv Detail & Related papers (2020-09-04T16:17:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.