論文の概要: Training or Architecture? How to Incorporate Invariance in Neural
Networks
- arxiv url: http://arxiv.org/abs/2106.10044v1
- Date: Fri, 18 Jun 2021 10:31:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-21 14:05:23.761688
- Title: Training or Architecture? How to Incorporate Invariance in Neural
Networks
- Title(参考訳): トレーニングかアーキテクチャか?
ニューラルネットワークに不変性を導入する方法
- Authors: Kanchana Vaishnavi Gandikota, Jonas Geiping, Zorah L\"ahner, Adam
Czapli\'nski, Michael Moeller
- Abstract要約: 本稿では,グループ行動に関して,ネットワークアーキテクチャを確実に不変化する手法を提案する。
簡単に言えば、実際のネットワークにデータを送る前に、可能なトランスフォーメーションを“無効化”するつもりです。
このような手法の特性を解析し、等変ネットワークに拡張し、その利点を頑健さと計算効率の両面からいくつかの数値例で示す。
- 参考スコア(独自算出の注目度): 14.162739081163444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many applications require the robustness, or ideally the invariance, of a
neural network to certain transformations of input data. Most commonly, this
requirement is addressed by either augmenting the training data, using
adversarial training, or defining network architectures that include the
desired invariance automatically. Unfortunately, the latter often relies on the
ability to enlist all possible transformations, which make such approaches
largely infeasible for infinite sets of transformations, such as arbitrary
rotations or scaling. In this work, we propose a method for provably invariant
network architectures with respect to group actions by choosing one element
from a (possibly continuous) orbit based on a fixed criterion. In a nutshell,
we intend to 'undo' any possible transformation before feeding the data into
the actual network. We analyze properties of such approaches, extend them to
equivariant networks, and demonstrate their advantages in terms of robustness
as well as computational efficiency in several numerical examples. In
particular, we investigate the robustness with respect to rotations of images
(which can possibly hold up to discretization artifacts only) as well as the
provable rotational and scaling invariance of 3D point cloud classification.
- Abstract(参考訳): 多くのアプリケーションは、入力データの特定の変換に対するニューラルネットワークの堅牢性、あるいは理想的には不変性を必要とする。
最も一般的には、この要件はトレーニングデータの強化、逆のトレーニングの使用、あるいは望ましい不変性を含むネットワークアーキテクチャの定義によって対処される。
残念なことに、後者はしばしば全ての可能な変換を列挙する能力に依存しており、そのようなアプローチは任意の回転やスケーリングのような無限の変換集合に対してほとんど不可能である。
本研究では,固定基準に基づく(連続的な)軌道から1つの要素を選択することにより,グループ動作に関するネットワークアーキテクチャを確実に不変化する手法を提案する。
簡単に言えば、実際のネットワークにデータを送る前に、可能なトランスフォーメーションを“無効化”するつもりです。
このような手法の特性を解析し、等価ネットワークに拡張し、いくつかの数値例でロバスト性および計算効率の観点からその利点を実証する。
特に,画像の回転に関するロバスト性(離散化アーティファクトのみを保持することができる可能性がある)や,3次元点雲分類の証明可能な回転・スケーリング不変性について検討する。
関連論文リスト
- Equivariant Adaptation of Large Pretrained Models [20.687626756753563]
正規化ネットワークは,大規模な事前学習ネットワークの同種化に有効であることを示す。
データセットに依存した事前情報を用いて正準化関数を通知し、その性能を維持しながら、大きな事前訓練されたモデルを同変させることができる。
論文 参考訳(メタデータ) (2023-10-02T21:21:28Z) - Deep Neural Networks with Efficient Guaranteed Invariances [77.99182201815763]
我々は、性能改善の問題、特にディープニューラルネットワークのサンプル複雑性に対処する。
群同変畳み込みは同変表現を得るための一般的なアプローチである。
本稿では,各ストリームが異なる変換に不変なマルチストリームアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-03-02T20:44:45Z) - A Simple Strategy to Provable Invariance via Orbit Mapping [14.127786615513978]
本稿では,グループ行動に関して,ネットワークアーキテクチャを確実に不変にする方法を提案する。
簡単に言えば、実際のネットワークにデータを送る前に、可能なトランスフォーメーションを“無効化”するつもりです。
論文 参考訳(メタデータ) (2022-09-24T03:40:42Z) - SVNet: Where SO(3) Equivariance Meets Binarization on Point Cloud
Representation [65.4396959244269]
本論文は,3次元学習アーキテクチャを構築するための一般的なフレームワークを設計することによる課題に対処する。
提案手法はPointNetやDGCNNといった一般的なバックボーンに適用できる。
ModelNet40、ShapeNet、および実世界のデータセットであるScanObjectNNの実験では、この手法が効率、回転、精度の間の大きなトレードオフを達成することを示した。
論文 参考訳(メタデータ) (2022-09-13T12:12:19Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
変換によるクラス内分散に関する事前知識を活用することは、ディープニューラルネットワークのサンプル複雑性を改善するための強力な方法である。
そこで本研究では,アプリケーションの複雑な問題に対処するために,プルーニング法に基づく新しい単項選択アルゴリズムを提案する。
本稿では,Rotated-MNIST,SVHN,CIFAR-10データセットにおけるサンプルの複雑さの改善について述べる。
論文 参考訳(メタデータ) (2022-02-08T16:16:11Z) - Revisiting Transformation Invariant Geometric Deep Learning: Are Initial
Representations All You Need? [80.86819657126041]
変換不変および距離保存初期表現は変換不変性を達成するのに十分であることを示す。
具体的には、多次元スケーリングを変更することで、変換不変かつ距離保存された初期点表現を実現する。
我々は、TinvNNが変換不変性を厳密に保証し、既存のニューラルネットワークと組み合わせられるほど汎用的で柔軟なことを証明した。
論文 参考訳(メタデータ) (2021-12-23T03:52:33Z) - Quantised Transforming Auto-Encoders: Achieving Equivariance to
Arbitrary Transformations in Deep Networks [23.673155102696338]
畳み込みニューラルネットワーク(CNN)は画像翻訳と等価である。
埋め込みは任意の等式関係を同時に従うオートエンコーダアーキテクチャを提案する。
いくつかのデータセット上で入力画像の変換版の再レンダリングに成功した結果を示す。
論文 参考訳(メタデータ) (2021-11-25T02:26:38Z) - Frame Averaging for Invariant and Equivariant Network Design [50.87023773850824]
フレーム平均化(FA)は、既知の(バックボーン)アーキテクチャを新しい対称性タイプに不変あるいは同変に適応するためのフレームワークである。
FAモデルが最大表現力を持つことを示す。
我々は,新しいユニバーサルグラフニューラルネット(GNN),ユニバーサルユークリッド運動不変点クラウドネットワーク,およびユークリッド運動不変メッセージパッシング(MP)GNNを提案する。
論文 参考訳(メタデータ) (2021-10-07T11:05:23Z) - Dynamic Convolution for 3D Point Cloud Instance Segmentation [146.7971476424351]
動的畳み込みに基づく3次元点雲からのインスタンスセグメンテーション手法を提案する。
我々は、同じ意味圏と閉投票を持つ等質点を幾何学的遠近点に対して収集する。
提案手法は提案不要であり、代わりに各インスタンスの空間的および意味的特性に適応する畳み込みプロセスを利用する。
論文 参考訳(メタデータ) (2021-07-18T09:05:16Z) - More Is More -- Narrowing the Generalization Gap by Adding
Classification Heads [8.883733362171032]
我々は「TransNet」と呼ばれる入力変換に基づく既存のニューラルネットワークモデルのためのアーキテクチャ拡張を導入する。
私たちのモデルは、トレーニング時間のみに使用でき、予測のために刈り取られ、結果としてベースモデルと同等のアーキテクチャになります。
論文 参考訳(メタデータ) (2021-02-09T16:30:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。