Contrastive Learning of Generalized Game Representations
- URL: http://arxiv.org/abs/2106.10060v1
- Date: Fri, 18 Jun 2021 11:17:54 GMT
- Title: Contrastive Learning of Generalized Game Representations
- Authors: Chintan Trivedi, Antonios Liapis and Georgios N. Yannakakis
- Abstract summary: Representing games through their pixels offers a promising approach for building general-purpose and versatile game models.
While games are not merely images, neural network models trained on game pixels often capture differences of the visual style of the image rather than the content of the game.
In this paper we build on recent advances in contrastive learning and showcase its benefits for representation learning in games.
- Score: 2.323282558557423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Representing games through their pixels offers a promising approach for
building general-purpose and versatile game models. While games are not merely
images, neural network models trained on game pixels often capture differences
of the visual style of the image rather than the content of the game. As a
result, such models cannot generalize well even within similar games of the
same genre. In this paper we build on recent advances in contrastive learning
and showcase its benefits for representation learning in games. Learning to
contrast images of games not only classifies games in a more efficient manner;
it also yields models that separate games in a more meaningful fashion by
ignoring the visual style and focusing, instead, on their content. Our results
in a large dataset of sports video games containing 100k images across 175
games and 10 game genres suggest that contrastive learning is better suited for
learning generalized game representations compared to conventional supervised
learning. The findings of this study bring us closer to universal visual
encoders for games that can be reused across previously unseen games without
requiring retraining or fine-tuning.
Related papers
- Learning to Play Video Games with Intuitive Physics Priors [2.1548132286330453]
We design object-based input representations that generalize well across a number of video games.
Using these representations, we evaluate an agent's ability to learn games similar to an infant.
Our results suggest that a human-like object interaction setup capably learns to play several video games.
arXiv Detail & Related papers (2024-09-20T20:30:27Z) - Serious Games in Digital Gaming: A Comprehensive Review of Applications,
Game Engines and Advancements [55.2480439325792]
In recent years, serious games have become increasingly popular due to their ability to simultaneously educate and entertain users.
In this review, we provide a comprehensive overview of the different types of digital games and expand on the serious games genre.
We present the most widely used game engines used in the game development industry and extend the Unity game machine advantages.
arXiv Detail & Related papers (2023-11-03T09:17:09Z) - Towards General Game Representations: Decomposing Games Pixels into
Content and Style [2.570570340104555]
Learning pixel representations of games can benefit artificial intelligence across several downstream tasks.
This paper explores how generalizable pre-trained computer vision encoders can be for such tasks.
We employ a pre-trained Vision Transformer encoder and a decomposition technique based on game genres to obtain separate content and style embeddings.
arXiv Detail & Related papers (2023-07-20T17:53:04Z) - Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion
Models [68.85478477006178]
We present a Promptable Game Model (PGM) for neural video game simulators.
It allows a user to play the game by prompting it with high- and low-level action sequences.
Most captivatingly, our PGM unlocks the director's mode, where the game is played by specifying goals for the agents in the form of a prompt.
Our method significantly outperforms existing neural video game simulators in terms of rendering quality and unlocks applications beyond the capabilities of the current state of the art.
arXiv Detail & Related papers (2023-03-23T17:43:17Z) - Saliency Guided Contrastive Learning on Scene Images [71.07412958621052]
We leverage the saliency map derived from the model's output during learning to highlight discriminative regions and guide the whole contrastive learning.
Our method significantly improves the performance of self-supervised learning on scene images by +1.1, +4.3, +2.2 Top1 accuracy in ImageNet linear evaluation, Semi-supervised learning with 1% and 10% ImageNet labels, respectively.
arXiv Detail & Related papers (2023-02-22T15:54:07Z) - WinoGAViL: Gamified Association Benchmark to Challenge
Vision-and-Language Models [91.92346150646007]
In this work, we introduce WinoGAViL: an online game to collect vision-and-language associations.
We use the game to collect 3.5K instances, finding that they are intuitive for humans but challenging for state-of-the-art AI models.
Our analysis as well as the feedback we collect from players indicate that the collected associations require diverse reasoning skills.
arXiv Detail & Related papers (2022-07-25T23:57:44Z) - Game State Learning via Game Scene Augmentation [2.570570340104555]
We introduce a new game scene augmentation technique -- named GameCLR -- that takes advantage of the game-engine to define and synthesize specific, highly-controlled renderings of different game states.
Our results suggest that GameCLR can infer the game's state information from game footage more accurately compared to the baseline.
arXiv Detail & Related papers (2022-07-04T09:40:14Z) - From Language Games to Drawing Games [6.93765975252665]
We invent a set of drawing games, analogous to the approach taken by emergent language research in inventing communication games.
A critical difference is that drawing games demand much less effort from the receiver than do language games.
We present some preliminary experiments which have generated images by closing the generative-critical loop.
arXiv Detail & Related papers (2020-10-06T15:32:32Z) - Navigating the Landscape of Multiplayer Games [20.483315340460127]
We show how network measures applied to response graphs of large-scale games enable the creation of a landscape of games.
We illustrate our findings in domains ranging from canonical games to complex empirical games capturing the performance of trained agents pitted against one another.
arXiv Detail & Related papers (2020-05-04T16:58:17Z) - Watching the World Go By: Representation Learning from Unlabeled Videos [78.22211989028585]
Recent single image unsupervised representation learning techniques show remarkable success on a variety of tasks.
In this paper, we argue that videos offer this natural augmentation for free.
We propose Video Noise Contrastive Estimation, a method for using unlabeled video to learn strong, transferable single image representations.
arXiv Detail & Related papers (2020-03-18T00:07:21Z) - Model-Based Reinforcement Learning for Atari [89.3039240303797]
We show how video prediction models can enable agents to solve Atari games with fewer interactions than model-free methods.
Our experiments evaluate SimPLe on a range of Atari games in low data regime of 100k interactions between the agent and the environment.
arXiv Detail & Related papers (2019-03-01T15:40:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.