論文の概要: It's FLAN time! Summing feature-wise latent representations for
interpretability
- arxiv url: http://arxiv.org/abs/2106.10086v1
- Date: Fri, 18 Jun 2021 12:19:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-21 14:18:53.177566
- Title: It's FLAN time! Summing feature-wise latent representations for
interpretability
- Title(参考訳): FLANタイム!
可読性のための特徴的潜在表現の要約
- Authors: An-phi Nguyen, Maria Rodriguez Martinez
- Abstract要約: FLAN(Feature-wise Latent Additive Networks)と呼ばれる構造拘束型ニューラルネットワークの新たなクラスを提案する。
FLANは各入力機能を別々に処理し、それぞれに共通の潜在空間の表現を演算する。
これらの特徴的潜在表現は単純に要約され、集約された表現は予測に使用される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interpretability has become a necessary feature for machine learning models
deployed in critical scenarios, e.g. legal systems, healthcare. In these
situations, algorithmic decisions may have (potentially negative) long-lasting
effects on the end-user affected by the decision. In many cases, the
representational power of deep learning models is not needed, therefore simple
and interpretable models (e.g. linear models) should be preferred. However, in
high-dimensional and/or complex domains (e.g. computer vision), the universal
approximation capabilities of neural networks is required. Inspired by linear
models and the Kolmogorov-Arnol representation theorem, we propose a novel
class of structurally-constrained neural networks, which we call FLANs
(Feature-wise Latent Additive Networks). Crucially, FLANs process each input
feature separately, computing for each of them a representation in a common
latent space. These feature-wise latent representations are then simply summed,
and the aggregated representation is used for prediction. These constraints
(which are at the core of the interpretability of linear models) allow an user
to estimate the effect of each individual feature independently from the
others, enhancing interpretability. In a set of experiments across different
domains, we show how without compromising excessively the test performance, the
structural constraints proposed in FLANs indeed increase the interpretability
of deep learning models.
- Abstract(参考訳): 解釈可能性(interpretability)は、重要なシナリオにデプロイされる機械学習モデルに必要な機能である。
法制度 医療
これらの状況において、アルゴリズム的決定は、決定によって影響を受けるエンドユーザに(潜在的に負の)長期的影響をもたらす可能性がある。
多くの場合、深層学習モデルの表現力は必要ないため、単純で解釈可能なモデル(例)である。
線形モデル)が好まれるべきです。
しかし、高次元および/または複素領域では(例えば)。
コンピュータビジョン) ニューラルネットワークの普遍的な近似能力が必要である。
線形モデルとコルモゴロフ・アルノル表現定理に着想を得て,FLAN(Feature-wise Latent Additive Networks)と呼ばれる構造制約ニューラルネットワークの新たなクラスを提案する。
重要なことに、FLANは各入力特徴を個別に処理し、それぞれに共通の潜在空間の表現を演算する。
これらの特徴的潜在表現は単純に要約され、集約された表現は予測に使用される。
これらの制約(線形モデルの解釈可能性の核心にある)により、ユーザーは個々の特徴を他の特徴とは独立に評価し、解釈可能性を高めることができる。
異なる領域にわたる一連の実験において、テスト性能を過度に損なうことなく、FLANで提案される構造的制約がディープラーニングモデルの解釈可能性を高めることを示す。
関連論文リスト
- FocusLearn: Fully-Interpretable, High-Performance Modular Neural Networks for Time Series [0.3277163122167434]
本稿では,構築によって解釈可能な時系列予測のための新しいモジュール型ニューラルネットワークモデルを提案する。
リカレントニューラルネットワークはデータ内の時間的依存関係を学習し、アテンションベースの特徴選択コンポーネントは最も関連性の高い特徴を選択する。
モジュール型のディープネットワークは、選択した機能から独立してトレーニングされ、ユーザーが機能がどのように結果に影響を与えるかを示し、モデルを解釈できる。
論文 参考訳(メタデータ) (2023-11-28T14:51:06Z) - The Contextual Lasso: Sparse Linear Models via Deep Neural Networks [5.607237982617641]
本研究では,空間的特徴の関数として空間的パターンと係数が変化するような説明的特徴に疎線形モデルに適合する新しい統計的推定器を開発する。
実データと合成データに関する広範な実験は、学習されたモデルは、非常に透明であり、通常のラッソよりもスペーサーであることを示している。
論文 参考訳(メタデータ) (2023-02-02T05:00:29Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Combining Discrete Choice Models and Neural Networks through Embeddings:
Formulation, Interpretability and Performance [10.57079240576682]
本研究では、ニューラルネットワーク(ANN)を用いた理論とデータ駆動選択モデルを組み合わせた新しいアプローチを提案する。
特に、分類的または離散的説明変数を符号化するために、埋め込みと呼ばれる連続ベクトル表現を用いる。
我々のモデルは最先端の予測性能を提供し、既存のANNモデルよりも優れ、必要なネットワークパラメータの数を劇的に削減します。
論文 参考訳(メタデータ) (2021-09-24T15:55:31Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
構造因果モデル (Structuor causal model, SCM) と呼ばれるオブジェクトは、調査中のシステムのランダムな変動のメカニズムと源の集合を表す。
本稿では, 因果的階層定理 (Thm. 1, Bareinboim et al., 2020) がまだニューラルモデルに対して成り立っていることを示す。
我々はニューラル因果モデル(NCM)と呼ばれる特殊なタイプのSCMを導入し、因果推論に必要な構造的制約をエンコードする新しいタイプの帰納バイアスを定式化する。
論文 参考訳(メタデータ) (2021-07-02T01:55:18Z) - DoLFIn: Distributions over Latent Features for Interpretability [8.807587076209568]
ニューラルネットワークモデルにおける解釈可能性を実現するための新しい戦略を提案する。
我々のアプローチは、確率を中心量として使う成功に基づいている。
DoLFInは解釈可能なソリューションを提供するだけでなく、古典的なCNNやBiLSTMテキスト分類よりも若干優れています。
論文 参考訳(メタデータ) (2020-11-10T18:32:53Z) - Neural Additive Models: Interpretable Machine Learning with Neural Nets [77.66871378302774]
ディープニューラルネットワーク(DNN)は、さまざまなタスクにおいて優れたパフォーマンスを達成した強力なブラックボックス予測器である。
本稿では、DNNの表現性と一般化した加法モデルの固有知性を組み合わせたニューラル付加モデル(NAM)を提案する。
NAMは、ニューラルネットワークの線形結合を学び、それぞれが単一の入力機能に付随する。
論文 参考訳(メタデータ) (2020-04-29T01:28:32Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。