論文の概要: BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based
Masked Language-models
- arxiv url: http://arxiv.org/abs/2106.10199v1
- Date: Fri, 18 Jun 2021 16:09:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-21 16:37:15.132658
- Title: BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based
Masked Language-models
- Title(参考訳): bitfit: トランスフォーマーに基づくマスク言語モデルのパラメータ効率の簡単な微調整
- Authors: Elad Ben Zaken, Shauli Ravfogel, Yoav Goldberg
- Abstract要約: 我々は、事前訓練されたBERTモデルのバイアス項(またはバイアス項のサブセット)のみを微調整することは、モデル全体を微調整する(そして、時にはそれよりも優れている)ことを示す。
彼らは、ファインタニングは、新しいタスク固有の言語知識を学ぶのではなく、言語モデリングの訓練によって引き起こされる知識を明らかにすることであるという仮説を支持している。
- 参考スコア(独自算出の注目度): 51.53936551681613
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that with small-to-medium training data, fine-tuning only the bias
terms (or a subset of the bias terms) of pre-trained BERT models is competitive
with (and sometimes better than) fine-tuning the entire model. For larger data,
bias-only fine-tuning is competitive with other sparse fine-tuning methods.
Besides their practical utility, these findings are relevant for the question
of understanding the commonly-used process of finetuning: they support the
hypothesis that finetuning is mainly about exposing knowledge induced by
language-modeling training, rather than learning new task-specific linguistic
knowledge.
- Abstract(参考訳): 我々は,小口径のトレーニングデータを用いて,事前学習したBERTモデルの偏差項(あるいは偏差項のサブセット)のみを微調整することは,モデル全体の微調整と競合する(時として優れている)ことを示す。
大きなデータの場合、バイアスのみの微調整は他のまばらな微調整法と競合する。
ファインタニングは、新しいタスク固有の言語知識を学ぶのではなく、言語モデリングトレーニングによって引き起こされる知識を公開することによるものであるという仮説を支持している。
関連論文リスト
- An Emulator for Fine-Tuning Large Language Models using Small Language
Models [91.02498576056057]
本研究では,異なるスケールでの事前学習と微調整の結果を近似する分布から,エミュレート・ファインチューニング(EFT)を原理的かつ実用的なサンプリング法として導入する。
EFTは、追加トレーニングを伴わずに、有益性や無害性といった競合する行動特性をテスト時間で調整できることを示す。
最後に、LMアップスケーリングと呼ばれるエミュレートされたファインチューニングの特殊な場合において、小さなファインチューニングモデルと組み合わせることで、大きな事前学習モデルのリソース集約的なファインチューニングを回避する。
論文 参考訳(メタデータ) (2023-10-19T17:57:16Z) - How Should Pre-Trained Language Models Be Fine-Tuned Towards Adversarial
Robustness? [121.57551065856164]
本稿では,情報理論の観点から,新しい対角的微調整法としてロバスト・インフォーマティブ・ファインチューニング(RIFT)を提案する。
RIFTは、微調整プロセス全体を通して、事前訓練されたモデルから学んだ特徴を維持するために客観的モデルを奨励する。
実験の結果, RIFTは2つのNLPタスクにおいて, 最先端のタスクを一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2021-12-22T05:04:41Z) - Exploring Strategies for Generalizable Commonsense Reasoning with
Pre-trained Models [62.28551903638434]
モデルの一般化と精度に及ぼす3つの異なる適応法の影響を計測する。
2つのモデルを用いた実験では、微調整はタスクの内容と構造の両方を学習することで最もうまく機能するが、過度に適合し、新しい答えへの限定的な一般化に苦しむ。
我々は、プレフィックスチューニングのような代替適応手法が同等の精度を持つのを観察するが、解を見落とさずに一般化し、対数分割に対してより堅牢である。
論文 参考訳(メタデータ) (2021-09-07T03:13:06Z) - NoiER: An Approach for Training more Reliable Fine-TunedDownstream Task
Models [54.184609286094044]
補助モデルと付加データなしで問題を解くための学習パラダイムとして,ノイズエントロピー正規化(NoiER)を提案する。
提案手法は,従来の微調整モデルと比較して平均55%改善した。
論文 参考訳(メタデータ) (2021-08-29T06:58:28Z) - Fine-tuning BERT for Low-Resource Natural Language Understanding via
Active Learning [30.5853328612593]
本研究では,事前学習した Transformer ベースの言語モデル BERT の微調整手法について検討する。
実験結果から,モデルの知識獲得度を最大化することで,モデル性能の優位性を示す。
我々は、微調整中の言語モデルの凍結層の利点を分析し、トレーニング可能なパラメータの数を減らす。
論文 参考訳(メタデータ) (2020-12-04T08:34:39Z) - On the Interplay Between Fine-tuning and Sentence-level Probing for
Linguistic Knowledge in Pre-trained Transformers [24.858283637038422]
本稿では,BERT,RoBERTa,ALBERTの3種類の事前学習モデルについて検討する。
探究タスクの微調整によって精度が大幅に変化することを発見した。
ファインチューニングは、実際に事前訓練されたモデルの表現を変えるが、ごく少数のケースでのみ、ファインチューニングは探索精度に肯定的な影響を及ぼす。
論文 参考訳(メタデータ) (2020-10-06T10:54:00Z) - Selecting Informative Contexts Improves Language Model Finetuning [66.26521454263343]
本稿では,情報ゲインフィルタと呼ぶ汎用的な微調整手法を提案する。
微調整中、二次学習者は情報的例を選択し、非情報的例をスキップする。
提案手法は,データセット,微調整タスク,言語モデルアーキテクチャ間で一貫した改善がなされていることを示す。
論文 参考訳(メタデータ) (2020-05-01T02:01:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。