論文の概要: An Investigation into Mini-Batch Rule Learning
- arxiv url: http://arxiv.org/abs/2106.10202v1
- Date: Fri, 18 Jun 2021 16:10:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-21 16:27:16.092104
- Title: An Investigation into Mini-Batch Rule Learning
- Title(参考訳): ミニバッチルール学習に関する研究
- Authors: Florian Beck and Johannes F\"urnkranz
- Abstract要約: 単一の隠蔽層を持つネットワーク構造において,ルールセットを効率的に学習できるかどうかを検討する。
最初の初歩的なバージョンは、1つのデータセットを除いて、許容可能なパフォーマンスを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate whether it is possible to learn rule sets efficiently in a
network structure with a single hidden layer using iterative refinements over
mini-batches of examples. A first rudimentary version shows an acceptable
performance on all but one dataset, even though it does not yet reach the
performance levels of Ripper.
- Abstract(参考訳): 例のミニバッチに対する反復的改良を用いて,単一の隠蔽層を持つネットワーク構造において,ルールセットを効率的に学習できるかどうかを検討する。
最初のrudimentaryバージョンは、ripperのパフォーマンスレベルにはまだ達していないが、単一のデータセット以外すべてにおいて許容できるパフォーマンスを示している。
関連論文リスト
- First-order ANIL provably learns representations despite overparametrization [21.74339210788053]
本研究は,線形二層ネットワークアーキテクチャを用いた一階ANILが線形共有表現の学習に成功していることを示す。
共有表現の次元よりも広い幅を持つことは、アニマルな低ランク解をもたらす。
全体として、一階のANILのようなモデルに依存しない手法が、いかに共有表現を学習できるかを示す。
論文 参考訳(メタデータ) (2023-03-02T15:13:37Z) - Deepfake Detection via Joint Unsupervised Reconstruction and Supervised
Classification [25.84902508816679]
本稿では,再建作業と分類作業を同時に行うディープフェイク検出手法を提案する。
この方法は、あるタスクによって学習された情報を他のタスクと共有する。
提案手法は,一般的に使用されている3つのデータセットに対して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-11-24T05:44:26Z) - A Fair Loss Function for Network Pruning [70.35230425589592]
本稿では, 刈り込み時のバイアスの抑制に使用できる簡易な改良型クロスエントロピー損失関数である, 性能重み付き損失関数を提案する。
CelebA、Fitzpatrick17k、CIFAR-10データセットを用いた実験は、提案手法が単純で効果的なツールであることを実証している。
論文 参考訳(メタデータ) (2022-11-18T15:17:28Z) - Few-shot Sequence Learning with Transformers [79.87875859408955]
少数のトレーニング例で提供される新しいタスクの学習を目的とした少数のショットアルゴリズム。
本研究では,データポイントがトークンのシーケンスである設定において,少数ショット学習を行う。
トランスフォーマーに基づく効率的な学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-17T12:30:38Z) - Open-set Short Utterance Forensic Speaker Verification using
Teacher-Student Network with Explicit Inductive Bias [59.788358876316295]
そこで本研究では,小規模の法定フィールドデータセット上での話者検証を改善するためのパイプラインソリューションを提案する。
大規模領域外データセットを活用することで,教師学習のための知識蒸留に基づく目的関数を提案する。
提案する目的関数は,短時間の発話における教師学生の学習性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2020-09-21T00:58:40Z) - Semi-supervised dictionary learning with graph regularization and active
points [0.19947949439280027]
2つの柱に基づく辞書学習手法を提案する。
一方、元のデータから局所線形埋め込みを用いたスパース符号空間に多様体構造保存を強制する。
一方、スパース符号空間における半教師付き分類器を訓練する。
論文 参考訳(メタデータ) (2020-09-13T09:24:51Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
サンプルサブネットワークの性能に適合するグラフ畳み込みネットワークを訓練する。
この戦略により、選択された候補集合において、より高いランク相関係数が得られる。
論文 参考訳(メタデータ) (2020-04-17T19:12:39Z) - Uncovering Coresets for Classification With Multi-Objective Evolutionary
Algorithms [0.8057006406834467]
coresetはトレーニングセットのサブセットであり、機械学習アルゴリズムが元のデータ全体にわたってトレーニングされた場合の成果と同じようなパフォーマンスを取得する。
候補コルセットは反復的に最適化され、サンプルの追加と削除が行われる。
多目的進化アルゴリズムは、集合内の点数と分類誤差を同時に最小化するために用いられる。
論文 参考訳(メタデータ) (2020-02-20T09:59:56Z) - Hierarchical Variational Imitation Learning of Control Programs [131.7671843857375]
パラメータ化された階層的手順(PHP)で表される制御ポリシーの模倣学習のための変分推論手法を提案する。
本手法は, 教師による実演の観察・行動トレースのデータセットにおける階層構造を, 手続き呼び出しや用語の待ち行列に近似した後続分布を学習することによって発見する。
階層的模倣学習(hierarchical mimicion learning)の文脈における変分推論の新たな利点を実証する。
論文 参考訳(メタデータ) (2019-12-29T08:57:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。