The Exact Second Order Corrections and Accurate Quasiparticle Energy
Calculations in Density Functional Theory
- URL: http://arxiv.org/abs/2106.10358v2
- Date: Wed, 21 Jul 2021 14:28:17 GMT
- Title: The Exact Second Order Corrections and Accurate Quasiparticle Energy
Calculations in Density Functional Theory
- Authors: Yuncai Mei, Zehua Chen, Weitao Yang
- Abstract summary: We develop a second order correction to commonly used density functional approximations (DFA)
For small and medium-size molecules, this correction leads to ground-state orbital energies that are highly accurate approximation to the corresponding quasiparticle energies.
It provides excellent predictions of ionization potentials, electron affinities, photoemission spectrum and photoexcitation energies beyond previous approximate second order approaches.
- Score: 0.8057006406834467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a second order correction to commonly used density functional
approximations (DFA) to eliminate the systematic delocalization error. The
method, based on the previously developed global scaling correction (GSC), is
an exact quadratic correction to the DFA for the fractional charge behavior and
uses the analytical second derivatives of the total energy with respect to
fractional occupation numbers of the canonical molecular orbitals. For small
and medium-size molecules, this correction leads to ground-state orbital
energies that are highly accurate approximation to the corresponding
quasiparticle energies. It provides excellent predictions of ionization
potentials, electron affinities, photoemission spectrum and photoexcitation
energies beyond previous approximate second order approaches, thus showing
potential for broad applications in computational spectroscopy.
Related papers
- Leading correction to the relativistic Foldy-Wouthuysen Hamiltonian [55.2480439325792]
We rigorously derive a leading correction in the weak-field approximation to the known relativistic Foldy-Wouthuysen Hamiltonian.
For Dirac particles, the relativistic wave equation of the second order is obtained with the correction similar to that to the Foldy-Wouthuysen Hamiltonian.
arXiv Detail & Related papers (2024-08-03T12:53:41Z) - Enhancing the Electron Pair Approximation with Measurements on Trapped
Ion Quantum Computers [7.1240576597319825]
We introduce reduced density matrix (RDM) based second order theory (PT2) as an energetic correction to electron pair approximation.
The new approach takes into account the broken-pair energy contribution that is missing in pair-correlated electron simulations.
On two generations of the IonQ's trapped ion quantum computers, Aria and Forte, we find that unlike the VQE energy, the PT2 energy correction is highly noise-resilient.
arXiv Detail & Related papers (2023-12-09T01:13:46Z) - Orbital-Free Density Functional Theory with Continuous Normalizing Flows [54.710176363763296]
Orbital-free density functional theory (OF-DFT) provides an alternative approach for calculating the molecular electronic energy.
Our model successfully replicates the electronic density for a diverse range of chemical systems.
arXiv Detail & Related papers (2023-11-22T16:42:59Z) - Vacuum polarization correction to atomic energy levels in the path
integral formalism [0.17404865362620806]
We apply quantum electrodynamics in a framework which treats the strong binding nuclear field to all orders.
Expressions for the vacuum polarization shift of binding energies are obtained from the poles of the spectral function up to second order.
arXiv Detail & Related papers (2023-09-24T19:56:45Z) - Faster spectral density calculation using energy moments [77.34726150561087]
We reformulate the recently proposed Gaussian Integral Transform technique in terms of Fourier moments of the system Hamiltonian.
One of the main advantages of this framework is that it allows for an important reduction of the computational cost.
arXiv Detail & Related papers (2022-11-01T23:57:58Z) - Direct determination of optimal real-space orbitals for correlated
electronic structure of molecules [0.0]
We show how to determine numerically nearly exact orthonormal orbitals that are optimal for evaluation of the energy of arbitrary (correlated) states of atoms and molecules.
Orbitals are expressed in real space using a multiresolution spectral element basis that is refined adaptively to achieve the user-specified target precision.
arXiv Detail & Related papers (2022-07-22T02:10:02Z) - Structural aspects of FRG in quantum tunnelling computations [68.8204255655161]
We probe both the unidimensional quartic harmonic oscillator and the double well potential.
Two partial differential equations for the potential V_k(varphi) and the wave function renormalization Z_k(varphi) are studied.
arXiv Detail & Related papers (2022-06-14T15:23:25Z) - Real-time equation-of-motion CC cumulant and CC Green's function
simulations of photoemission spectra of water and water dimer [54.44073730234714]
We discuss results obtained with the real-time equation-of-motion CC cumulant approach.
We compare the ionization potentials obtained with these methods for the valence region.
We analyze unique features of the spectral functions, associated with the position of satellite peaks, obtained with the RT-EOM-CC and CCGF methods.
arXiv Detail & Related papers (2022-05-27T18:16:30Z) - Electron-Affinity Time-Dependent Density Functional Theory: Formalism
and Applications to Core-Excited States [0.0]
The particle-hole interaction problem is longstanding within time-dependent density functional theory.
We derive a linear-response formalism that uses optimized orbitals of the n-1-electron system as reference.
Our approach is an exact generalization of the static-exchange approximation and reduces errors in TDDFT XAS by orders of magnitude.
arXiv Detail & Related papers (2022-05-17T23:05:15Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - A complex Gaussian approach to molecular photoionization [0.0]
We develop and implement a Gaussian approach to calculate partial cross-sections and asymmetry parameters for molecular photoionization.
We show that all the necessary transition integrals become analytical, in both length and velocity gauges, thus facilitating the numerical evaluation of photoionization observables.
Illustrative results, presented for NH3 and H2O within a one-active-electron monocentric model, validate the proposed strategy.
arXiv Detail & Related papers (2021-11-16T17:26:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.