Approximate normalizations for approximate density functionals
- URL: http://arxiv.org/abs/2504.03845v1
- Date: Fri, 04 Apr 2025 18:06:07 GMT
- Title: Approximate normalizations for approximate density functionals
- Authors: Adam Clay, Kiril Datchev, Wenlan Miao, Adam Wasserman, Kimberly J. Daas, Kieron Burke,
- Abstract summary: It seems self-evident that a density functional calculation should be normalized to the number of electrons in the system.<n>We present examples where the accuracy of the approximate energy is improved (sometimes greatly) by violating this basic principle.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It seems self-evident that a density functional calculation should be normalized to the number of electrons in the system. We present multiple examples where the accuracy of the approximate energy is improved (sometimes greatly) by violating this basic principle. In one dimension, we explicitly derive the appropriate correction to the normalization. Beyond one dimension, Weyl asymptotics for energy levels yield these corrections for any cavity. We include examples with Coulomb potentials and the exchange energy of atoms to illustrate relevance to realistic calculations.
Related papers
- Orbital-Free Density Functional Theory with Continuous Normalizing Flows [54.710176363763296]
Orbital-free density functional theory (OF-DFT) provides an alternative approach for calculating the molecular electronic energy.
Our model successfully replicates the electronic density for a diverse range of chemical systems.
arXiv Detail & Related papers (2023-11-22T16:42:59Z) - Variational Equations-of-States for Interacting Quantum Hamiltonians [0.0]
We present variational equations of state (VES) for pure states of an interacting quantum Hamiltonian.
VES can be expressed in terms of the variation of the density operators or static correlation functions.
We present three nontrivial applications of the VES.
arXiv Detail & Related papers (2023-07-03T07:51:15Z) - Electronic excitations of the charged nitrogen-vacancy center in diamond
obtained using time-independent variational density functional calculations [0.0]
A direct orbital optimization method is used to perform variational density functional calculations of a prototypical defect in diamond.
Results are remarkably good agreement with high-level, many-body calculations as well as available experimental estimates.
The approach is found to be a promising tool for studying electronic excitations of point defects in solids.
arXiv Detail & Related papers (2023-03-07T12:09:16Z) - Homogeneous electron gas in arbitrary dimensions beyond the random phase
approximation [0.0]
We use the celebrated approach developed by Singwi, Tosi, Land, and Sj"olander (STLS) to compute correlation energy beyond the random phase approximation (RPA)
For two and three dimensions, both in the paramagnetic and ferromagnetic ground states, STLS is capable of producing correlation energies in close agreement with Monte-Carlo values.
arXiv Detail & Related papers (2022-10-06T16:15:14Z) - Electron-Affinity Time-Dependent Density Functional Theory: Formalism
and Applications to Core-Excited States [0.0]
The particle-hole interaction problem is longstanding within time-dependent density functional theory.
We derive a linear-response formalism that uses optimized orbitals of the n-1-electron system as reference.
Our approach is an exact generalization of the static-exchange approximation and reduces errors in TDDFT XAS by orders of magnitude.
arXiv Detail & Related papers (2022-05-17T23:05:15Z) - On the Normalization and Density of 1D Scattering States [0.0]
In this paper we show that this correspondence between scattering state normalization and the density of states is a consequence of the relation completeness.
We then illustrate how the density of states can be used to calculate the partition function for a system of two particles with a point-like (delta potential) interaction.
arXiv Detail & Related papers (2021-12-16T18:43:49Z) - Spectral density reconstruction with Chebyshev polynomials [77.34726150561087]
We show how to perform controllable reconstructions of a finite energy resolution with rigorous error estimates.
This paves the way for future applications in nuclear and condensed matter physics.
arXiv Detail & Related papers (2021-10-05T15:16:13Z) - Deformed Explicitly Correlated Gaussians [58.720142291102135]
Deformed correlated Gaussian basis functions are introduced and their matrix elements are calculated.
These basis functions can be used to solve problems with nonspherical potentials.
arXiv Detail & Related papers (2021-08-10T18:23:06Z) - The Exact Second Order Corrections and Accurate Quasiparticle Energy
Calculations in Density Functional Theory [0.8057006406834467]
We develop a second order correction to commonly used density functional approximations (DFA)
For small and medium-size molecules, this correction leads to ground-state orbital energies that are highly accurate approximation to the corresponding quasiparticle energies.
It provides excellent predictions of ionization potentials, electron affinities, photoemission spectrum and photoexcitation energies beyond previous approximate second order approaches.
arXiv Detail & Related papers (2021-06-18T21:24:21Z) - Optimal radial basis for density-based atomic representations [58.720142291102135]
We discuss how to build an adaptive, optimal numerical basis that is chosen to represent most efficiently the structural diversity of the dataset at hand.
For each training dataset, this optimal basis is unique, and can be computed at no additional cost with respect to the primitive basis.
We demonstrate that this construction yields representations that are accurate and computationally efficient.
arXiv Detail & Related papers (2021-05-18T17:57:08Z) - Determination of the critical exponents in dissipative phase
transitions: Coherent anomaly approach [51.819912248960804]
We propose a generalization of the coherent anomaly method to extract the critical exponents of a phase transition occurring in the steady-state of an open quantum many-body system.
arXiv Detail & Related papers (2021-03-12T13:16:18Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.