Jolteon and Ditto: Network-Adaptive Efficient Consensus with Asynchronous Fallback
- URL: http://arxiv.org/abs/2106.10362v4
- Date: Tue, 9 Jul 2024 18:10:49 GMT
- Title: Jolteon and Ditto: Network-Adaptive Efficient Consensus with Asynchronous Fallback
- Authors: Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman, Zhuolun Xiang,
- Abstract summary: We develop Ditto, a Byzantine SMR protocol that enjoys the best of both worlds: optimal communication on and off the happy path and progress guarantee under asynchrony and DDoS attacks.
Specifically, we start from HotStuff, a state-of-the-art linear protocol, and gradually build Ditto. As a separate contribution and an intermediate step, we design a 2-chain version of HotStuff, Jolteon.
We implement and experimentally evaluate all our systems. Notably, Jolteon's commit latency outperforms HotStuff by 200-300ms with varying system size.
- Score: 46.30924494799245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing committee-based Byzantine state machine replication (SMR) protocols, typically deployed in production blockchains, face a clear trade-off: (1) they either achieve linear communication cost in the happy path, but sacrifice liveness during periods of asynchrony, or (2) they are robust (progress with probability one) but pay quadratic communication cost. We believe this trade-off is unwarranted since existing linear protocols still have asymptotic quadratic cost in the worst case. We design Ditto, a Byzantine SMR protocol that enjoys the best of both worlds: optimal communication on and off the happy path (linear and quadratic, respectively) and progress guarantee under asynchrony and DDoS attacks. We achieve this by replacing the view-synchronization of partially synchronous protocols with an asynchronous fallback mechanism at no extra asymptotic cost. Specifically, we start from HotStuff, a state-of-the-art linear protocol, and gradually build Ditto. As a separate contribution and an intermediate step, we design a 2-chain version of HotStuff, Jolteon, which leverages a quadratic view-change mechanism to reduce the latency of the standard 3-chain HotStuff. We implement and experimentally evaluate all our systems. Notably, Jolteon's commit latency outperforms HotStuff by 200-300ms with varying system size. Additionally, Ditto adapts to the network and provides better performance than Jolteon under faulty conditions and better performance than VABA (a state-of-the-art asynchronous protocol) under faultless conditions. This proves our case that breaking the robustness-efficiency trade-off is in the realm of practicality.
Related papers
- A Study on Asynchronous Vote-based Blockchains [4.79997217554732]
Vote-based blockchains use Byzantine Fault Tolerance consensus protocols to transition from one state to another.
This paper proposes a emphvalidated strong BFT consensus model that allows leader-based coordination in asynchronous settings.
Our protocol greatly reduces message complexity and is the first one to achieve linear view changes without relying on threshold signatures.
arXiv Detail & Related papers (2024-09-12T15:54:40Z) - AsyncDiff: Parallelizing Diffusion Models by Asynchronous Denoising [49.785626309848276]
AsyncDiff is a universal and plug-and-play acceleration scheme that enables model parallelism across multiple devices.
For the Stable Diffusion v2.1, AsyncDiff achieves a 2.7x speedup with negligible degradation and a 4.0x speedup with only a slight reduction of 0.38 in CLIP Score.
Our experiments also demonstrate that AsyncDiff can be readily applied to video diffusion models with encouraging performances.
arXiv Detail & Related papers (2024-06-11T03:09:37Z) - Fast and Secure Decentralized Optimistic Rollups Using Setchain [1.1534313664323634]
Layer 2 optimistic rollups (L2) are a faster alternative that offer the same interface in terms of smart contract development and user interaction.
We propose a decentralized L2 optimistic rollup based on Setchain, a decentralized Byzantine-tolerant implementation of sets.
arXiv Detail & Related papers (2024-06-04T13:45:12Z) - Freya PAGE: First Optimal Time Complexity for Large-Scale Nonconvex Finite-Sum Optimization with Heterogeneous Asynchronous Computations [92.1840862558718]
In practical distributed systems, workers typically not homogeneous, and can have highly varying processing times.
We introduce a new parallel method Freya to handle arbitrarily slow computations.
We show that Freya offers significantly improved complexity guarantees compared to all previous methods.
arXiv Detail & Related papers (2024-05-24T13:33:30Z) - Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead [17.387814385763622]
Sharding enhances blockchain scalability by dividing the network into shards, each managing specific unspent transaction outputs or accounts.
Cross-shard transactions pose a critical challenge to the security and efficiency of sharding blockchains.
We present Kronos, a secure sharding blockchain consensus achieving optimized overhead.
arXiv Detail & Related papers (2024-03-06T12:26:04Z) - Federated Contextual Cascading Bandits with Asynchronous Communication
and Heterogeneous Users [95.77678166036561]
We propose a UCB-type algorithm with delicate communication protocols.
We give sub-linear regret bounds on par with those achieved in the synchronous framework.
Empirical evaluation on synthetic and real-world datasets validates our algorithm's superior performance in terms of regrets and communication costs.
arXiv Detail & Related papers (2024-02-26T05:31:14Z) - Concurrent Asynchronous Byzantine Agreement in Expected-Constant Rounds, Revisited [3.8014967401609208]
We present the first information-theoretic multi-valued OCC protocol in the asynchronous setting with optimal resiliency.
Our protocol efficiently implements with an exponential-size domain.
We also provide proof in Canetti's Universal Composability framework.
arXiv Detail & Related papers (2023-12-22T08:10:11Z) - Prune Spatio-temporal Tokens by Semantic-aware Temporal Accumulation [89.88214896713846]
STA score considers two critical factors: temporal redundancy and semantic importance.
We apply the STA module to off-the-shelf video Transformers and Videowins.
Results: Kinetics-400 and Something-Something V2 achieve 30% overshelf reduction with a negligible 0.2% accuracy drop.
arXiv Detail & Related papers (2023-08-08T19:38:15Z) - $\textbf{A}^2\textbf{CiD}^2$: Accelerating Asynchronous Communication in
Decentralized Deep Learning [0.0]
We introduce a principled asynchronous, randomized, gossip-based optimization algorithm which works thanks to a continuous local momentum named $textbfA2textbfCiD2$.
Our theoretical analysis proves accelerated rates compared to previous asynchronous decentralized baselines.
We show consistent improvement on the ImageNet dataset using up to 64 asynchronous workers.
arXiv Detail & Related papers (2023-06-14T06:52:07Z) - Transferable Sparse Adversarial Attack [62.134905824604104]
We introduce a generator architecture to alleviate the overfitting issue and thus efficiently craft transferable sparse adversarial examples.
Our method achieves superior inference speed, 700$times$ faster than other optimization-based methods.
arXiv Detail & Related papers (2021-05-31T06:44:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.