Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead
- URL: http://arxiv.org/abs/2403.03655v3
- Date: Thu, 12 Sep 2024 06:58:23 GMT
- Title: Kronos: A Secure and Generic Sharding Blockchain Consensus with Optimized Overhead
- Authors: Yizhong Liu, Andi Liu, Yuan Lu, Zhuocheng Pan, Yinuo Li, Jianwei Liu, Song Bian, Mauro Conti,
- Abstract summary: Sharding enhances blockchain scalability by dividing the network into shards, each managing specific unspent transaction outputs or accounts.
Cross-shard transactions pose a critical challenge to the security and efficiency of sharding blockchains.
We present Kronos, a secure sharding blockchain consensus achieving optimized overhead.
- Score: 17.387814385763622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sharding enhances blockchain scalability by dividing the network into shards, each managing specific unspent transaction outputs or accounts. As an introduced new transaction type, cross-shard transactions pose a critical challenge to the security and efficiency of sharding blockchains. Currently, there is a lack of a generic sharding consensus pattern that achieves both security and low overhead. In this paper, we present Kronos, a secure sharding blockchain consensus achieving optimized overhead. In particular, we propose a new secure sharding consensus pattern, based on a buffer managed jointly by shard members. Valid transactions are transferred to the payee via the buffer, while invalid ones are rejected through happy or unhappy paths. Kronos is proved to achieve security with atomicity under malicious clients with optimal intra-shard overhead $kB$ ($k$ for involved shard number and $B$ for a Byzantine fault tolerance (BFT) cost). Besides, we propose secure cross-shard certification methods based on batch certification and reliable cross-shard transfer. The former combines hybrid trees or vector commitments, while the latter integrates erasure coding. Handling $b$ transactions, Kronos is proved to achieve reliability with low cross-shard overhead $O(n b \lambda)$ ($n$ for shard size and $\lambda$ for the security parameter). Notably, Kronos imposes no restrictions on BFT and does not rely on time assumptions, offering optional constructions in various modules. We implement Kronos using two prominent BFT protocols: asynchronous Speeding Dumbo and partial synchronous Hotstuff. Extensive experiments demonstrate Kronos scales the consensus nodes to thousands, achieving a substantial throughput of 320 ktx/sec with 2.0 sec latency. Compared with the past solutions, Kronos outperforms, achieving up to a 12* improvement in throughput and a 50% reduction in latency.
Related papers
- Zaptos: Towards Optimal Blockchain Latency [52.30047458198369]
We introduce Zaptos, a parallel pipelined architecture designed to minimize end-to-end latency.
Zaptos achieves a throughput of 20,000 transactions per second with sub-second latency.
arXiv Detail & Related papers (2025-01-18T00:22:22Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - SpiralShard: Highly Concurrent and Secure Blockchain Sharding via Linked Cross-shard Endorsement [9.81571913553477]
Existing sharding systems require large shard sizes to ensure security.
We propose SpiralShard to allow the existence of some shards with a larger fraction of malicious nodes.
SpiralShard achieves around 19x throughput gain under a large network size with 4,000+ nodes.
arXiv Detail & Related papers (2024-07-09T15:14:44Z) - Optimal Sharding for Scalable Blockchains with Deconstructed SMR [6.432440366479941]
Arete is an optimally scalable blockchain sharding protocol designed to resolve a size-security dilemma.
The key idea of Arete is to improve the security resilience/threshold of shards by dividing the blockchain's State Machine Replication (SMR) process itself.
We implement Arete and evaluate it on a AWS environment by running up to 500 nodes, showing that Arete outperforms the state-of-the-art sharding protocol.
arXiv Detail & Related papers (2024-06-12T14:23:53Z) - Model Supply Chain Poisoning: Backdooring Pre-trained Models via Embedding Indistinguishability [61.549465258257115]
We propose a novel and severer backdoor attack, TransTroj, which enables the backdoors embedded in PTMs to efficiently transfer in the model supply chain.
Experimental results show that our method significantly outperforms SOTA task-agnostic backdoor attacks.
arXiv Detail & Related papers (2024-01-29T04:35:48Z) - TBDD: A New Trust-based, DRL-driven Framework for Blockchain Sharding in IoT [25.15169926146292]
Integrating sharded blockchain with IoT presents a solution for trust issues and optimized data flow.
Deep Reinforcement Learning adeptly handles dynamic, complex systems and multi-dimensional optimization.
textscTbDd discerns node types and performs targeted resharding against potential threats.
arXiv Detail & Related papers (2024-01-01T01:57:28Z) - A Two-Layer Blockchain Sharding Protocol Leveraging Safety and Liveness for Enhanced Performance [5.344231997803284]
Existing protocols overlook diverse adversarial attacks, limiting transaction throughput.
This paper presents Reticulum, a groundbreaking sharding protocol addressing this issue.
It comprises "control" and "process" shards in two layers.
arXiv Detail & Related papers (2023-10-17T16:15:28Z) - ADESS: A Proof-of-Work Protocol to Deter Double-Spend Attacks [0.0]
A principal vulnerability of a proof-of-work ("PoW") blockchain is that an attacker can re-write the history of transactions.
We propose a modification to PoW protocols, called ADESS, that contains two novel features.
arXiv Detail & Related papers (2023-09-25T21:50:23Z) - Bitcoin-Enhanced Proof-of-Stake Security: Possibilities and Impossibilities [45.90740335615872]
Bitcoin is the most secure blockchain in the world, supported by the immense hash power of its Proof-of-Work miners.
Proof-of-Stake chains are energy-efficient, have fast finality but face several security issues.
We show that these security issues are inherent in any PoS chain without an external trusted source.
We propose a new protocol, Babylon, where an off-the-shelf PoS protocol checkpoints onto Bitcoin to resolve these issues.
arXiv Detail & Related papers (2022-07-18T06:01:25Z) - Jolteon and Ditto: Network-Adaptive Efficient Consensus with Asynchronous Fallback [46.30924494799245]
We develop Ditto, a Byzantine SMR protocol that enjoys the best of both worlds: optimal communication on and off the happy path and progress guarantee under asynchrony and DDoS attacks.
Specifically, we start from HotStuff, a state-of-the-art linear protocol, and gradually build Ditto. As a separate contribution and an intermediate step, we design a 2-chain version of HotStuff, Jolteon.
We implement and experimentally evaluate all our systems. Notably, Jolteon's commit latency outperforms HotStuff by 200-300ms with varying system size.
arXiv Detail & Related papers (2021-06-18T21:34:17Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task.
In this work, we examine the hardness of finding such chain of PoWs against quantum strategies.
We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity.
arXiv Detail & Related papers (2020-12-30T18:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.