Hybrid approach to detecting symptoms of depression in social media
entries
- URL: http://arxiv.org/abs/2106.10485v1
- Date: Sat, 19 Jun 2021 12:28:30 GMT
- Title: Hybrid approach to detecting symptoms of depression in social media
entries
- Authors: Agnieszka Wo{\l}k, Karol Chlasta, Pawe{\l} Holas
- Abstract summary: We present an innovative approach to the depression screening problem by applying Collgram analysis.
We create a hybrid model achieving a diagnostic accuracy of 71%.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sentiment and lexical analyses are widely used to detect depression or
anxiety disorders. It has been documented that there are significant
differences in the language used by a person with emotional disorders in
comparison to a healthy individual. Still, the effectiveness of these lexical
approaches could be improved further because the current analysis focuses on
what the social media entries are about, and not how they are written. In this
study, we focus on aspects in which these short texts are similar to each
other, and how they were created. We present an innovative approach to the
depression screening problem by applying Collgram analysis, which is a known
effective method of obtaining linguistic information from texts. We compare
these results with sentiment analysis based on the BERT architecture. Finally,
we create a hybrid model achieving a diagnostic accuracy of 71%.
Related papers
- A BERT-Based Summarization approach for depression detection [1.7363112470483526]
Depression is a globally prevalent mental disorder with potentially severe repercussions if not addressed.
Machine learning and artificial intelligence can autonomously detect depression indicators from diverse data sources.
Our study proposes text summarization as a preprocessing technique to diminish the length and intricacies of input texts.
arXiv Detail & Related papers (2024-09-13T02:14:34Z) - Measuring Non-Typical Emotions for Mental Health: A Survey of Computational Approaches [57.486040830365646]
Stress and depression impact the engagement in daily tasks, highlighting the need to understand their interplay.
This survey is the first to simultaneously explore computational methods for analyzing stress, depression, and engagement.
arXiv Detail & Related papers (2024-03-09T11:16:09Z) - DepressionEmo: A novel dataset for multilabel classification of
depression emotions [6.26397257917403]
DepressionEmo is a dataset designed to detect 8 emotions associated with depression by 6037 examples of long Reddit user posts.
This dataset was created through a majority vote over inputs by zero-shot classifications from pre-trained models.
We provide several text classification methods classified into two groups: machine learning methods such as SVM, XGBoost, and Light GBM; and deep learning methods such as BERT, GAN-BERT, and BART.
arXiv Detail & Related papers (2024-01-09T16:25:31Z) - Sensitivity, Performance, Robustness: Deconstructing the Effect of
Sociodemographic Prompting [64.80538055623842]
sociodemographic prompting is a technique that steers the output of prompt-based models towards answers that humans with specific sociodemographic profiles would give.
We show that sociodemographic information affects model predictions and can be beneficial for improving zero-shot learning in subjective NLP tasks.
arXiv Detail & Related papers (2023-09-13T15:42:06Z) - The Relationship Between Speech Features Changes When You Get Depressed:
Feature Correlations for Improving Speed and Performance of Depression
Detection [69.88072583383085]
This work shows that depression changes the correlation between features extracted from speech.
Using such an insight can improve the training speed and performance of depression detectors based on SVMs and LSTMs.
arXiv Detail & Related papers (2023-07-06T09:54:35Z) - What Symptoms and How Long? An Interpretable AI Approach for Depression
Detection in Social Media [0.5156484100374058]
Depression is the most prevalent and serious mental illness, which induces grave financial and societal ramifications.
This study contributes to IS literature with a novel interpretable deep learning model for depression detection in social media.
arXiv Detail & Related papers (2023-05-18T20:15:04Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
We propose a deep architecture for depression detection from social media posts.
We incorporate profanity and morality features of posts and words in our architecture using a late fusion scheme.
The inclusion of the proposed features yields state-of-the-art results in both settings.
arXiv Detail & Related papers (2023-03-24T21:26:27Z) - Handwriting and Drawing for Depression Detection: A Preliminary Study [53.11777541341063]
Short-term covid effects on mental health were a significant increase in anxiety and depressive symptoms.
The aim of this study is to use a new tool, the online handwriting and drawing analysis, to discriminate between healthy individuals and depressed patients.
arXiv Detail & Related papers (2023-02-05T22:33:49Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
This paper presents an efficient semantic pipeline to study depression severity in individuals based on their social media writings.
We use test user sentences for producing semantic rankings over an index of representative training sentences corresponding to depressive symptoms and severity levels.
We evaluate our methods on two Reddit-based benchmarks, achieving 30% improvement over state of the art in terms of measuring depression severity.
arXiv Detail & Related papers (2022-11-14T18:47:26Z) - Data set creation and empirical analysis for detecting signs of
depression from social media postings [0.0]
Depression is a common mental illness that has to be detected and treated at an early stage to avoid serious consequences.
We developed a gold standard data set that detects the levels of depression as not depressed', moderately depressed' and severely depressed' from the social media postings.
arXiv Detail & Related papers (2022-02-07T10:24:33Z) - An Exploratory Analysis of the Relation Between Offensive Language and
Mental Health [3.333967282951668]
We train computational models to compare the use of offensive language in social media posts written by groups of individuals with and without self-reported depression diagnosis.
Our analysis indicates that offensive language is more frequently used in the samples written by individuals with self-reported depression as well as individuals showing signs of depression.
arXiv Detail & Related papers (2021-05-31T11:25:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.