論文の概要: Supervised learning for crop/weed classification based on color and
texture features
- arxiv url: http://arxiv.org/abs/2106.10581v1
- Date: Sat, 19 Jun 2021 22:31:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-24 07:18:21.199419
- Title: Supervised learning for crop/weed classification based on color and
texture features
- Title(参考訳): 色・テクスチャ特徴に基づく作物・雑草分類のための教師付き学習
- Authors: Faiza Mekhalfa and Fouad Yacef
- Abstract要約: 本研究では,大豆および雑草の識別における色彩と食感の特徴について検討した。
無人航空機(UAV)から得られた大豆のイメージデータセットを用いて実験を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computer vision techniques have attracted a great interest in precision
agriculture, recently. The common goal of all computer vision-based precision
agriculture tasks is to detect the objects of interest (e.g., crop, weed) and
discriminating them from the background. The Weeds are unwanted plants growing
among crops competing for nutrients, water, and sunlight, causing losses to
crop yields. Weed detection and mapping is critical for site-specific weed
management to reduce the cost of labor and impact of herbicides. This paper
investigates the use of color and texture features for discrimination of
Soybean crops and weeds. Feature extraction methods including two color spaces
(RGB, HSV), gray level Co-occurrence matrix (GLCM), and Local Binary Pattern
(LBP) are used to train the Support Vector Machine (SVM) classifier. The
experiment was carried out on image dataset of soybean crop, obtained from an
unmanned aerial vehicle (UAV), which is publicly available. The results from
the experiment showed that the highest accuracy (above 96%) was obtained from
the combination of color and LBP features.
- Abstract(参考訳): 近年、コンピュータビジョン技術は精密農業に大きな関心を集めている。
コンピュータビジョンに基づく精密農業タスクの共通目標は、関心の対象(作物、雑草など)を検出し、それらを背景から識別することである。
雑草は、栄養素、水、日光を争う作物の間で栽培される望ましくない植物であり、作物の収量に損失をもたらす。
雑草検出とマッピングは, 作業コストと除草剤の影響を低減するために, 地域別雑草管理にとって重要である。
本稿では,大豆と雑草の識別における色とテクスチャの特徴の利用について検討する。
サポートベクトルマシン(SVM)分類器の訓練には、2つの色空間(RGB, HSV)、グレーレベル共起行列(GLCM)、ローカルバイナリパターン(LBP)を含む特徴抽出手法を用いる。
この実験は、一般利用可能である無人航空機(uav)から得られた大豆作物の画像データセットで実施された。
実験の結果,色特徴とLPP特徴の組合せから,最も高い精度(96%以上)が得られた。
関連論文リスト
- Multispectral Fine-Grained Classification of Blackgrass in Wheat and Barley Crops [2.580056799681784]
ブラックグラス(Blackgrass)は、ヨーロッパ北西部の穀物に特に問題を引き起こす草の雑草である。
マシンビジョンとマルチスペクトルイメージングを用いて,黒草を識別するための最先端手法の有効性について検討した。
論文 参考訳(メタデータ) (2024-05-03T16:23:41Z) - Precision Agriculture: Crop Mapping using Machine Learning and Sentinel-2 Satellite Imagery [5.914742040076052]
本研究では, 深層学習と画素ベース機械学習を用いて, 精密農業のためのラベンダーフィールドを正確に分別する。
我々の微調整最終モデルであるU-Netアーキテクチャは、Dice係数 0.8324 を達成することができる。
論文 参考訳(メタデータ) (2023-11-25T20:26:11Z) - Crop Disease Classification using Support Vector Machines with Green
Chromatic Coordinate (GCC) and Attention based feature extraction for IoT
based Smart Agricultural Applications [0.0]
植物病は農業栽培中の葉に悪影響を及ぼし、作物の生産量と経済的価値に大きな損失をもたらす。
各種機械学習(ML)と深層学習(DL)アルゴリズムが開発され,植物病の検出のための研究が行われている。
本稿では、注意に基づく特徴抽出、RGBチャネルに基づく色分析、SVM(Support Vector Machines)による性能向上による事前作業に基づく新しい分類手法を提案する。
論文 参考訳(メタデータ) (2023-11-01T10:44:49Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
本研究では,ブドウの葉のイメージを意味的にセグメント化するためにDeep Learning法を用いて,葉の表現型自動検出システムを開発した。
私たちの研究は、成長や開発のような動的な特性を捉え定量化できる植物ライフサイクルのモニタリングに寄与します。
論文 参考訳(メタデータ) (2022-10-24T14:37:09Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
本稿では, 深層ニューラルネットワークを用いたジャガイモの空中画像解析手法を提案する。
主な目的は、植物レベルでの健康作物とストレス作物の自動空間認識を実証することである。
実験により、フィールド画像中の健康植物とストレス植物を識別し、平均Dice係数0.74を達成できることを示した。
論文 参考訳(メタデータ) (2021-06-14T21:57:40Z) - Using depth information and colour space variations for improving
outdoor robustness for instance segmentation of cabbage [62.997667081978825]
本研究は, 異なる環境条件下での作物のインスタンスセグメンテーションの改善に焦点をあてる。
深度情報と異なる色空間表現の影響を分析した。
その結果,色情報と組み合わせることでセグメンテーション精度が7.1%向上した。
論文 参考訳(メタデータ) (2021-03-31T09:19:12Z) - A Survey of Deep Learning Techniques for Weed Detection from Images [4.96981595868944]
既存の深層学習に基づく雑草検出・分類手法を検討する。
その結果,ほとんどの研究が教師あり学習手法を適用し,高い分類精度を達成した。
過去の実験は、大量のラベル付きデータが利用できる場合に既に高い精度を達成している。
論文 参考訳(メタデータ) (2021-03-02T02:02:24Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
我々は,機械モデリングと衛星データ利用の並列化を活用し,作物生産性の高度モニタリングを行う。
本モデルでは, 地域情報を使用しなくても, 各種C3作物の種類, 環境条件の総合的生産性を推定することに成功した。
これは、現在の地球観測クラウドコンピューティングプラットフォームの助けを借りて、新しい衛星センサーから作物の生産性をグローバルにマップする可能性を強調しています。
論文 参考訳(メタデータ) (2020-12-07T16:23:13Z) - Weed Density and Distribution Estimation for Precision Agriculture using
Semi-Supervised Learning [0.0]
雑草密度と分布のロバストな推定のための深層学習に基づく半教師付き手法を提案する。
本研究では、作物や雑草を含む前景の植生画素を、畳み込みニューラルネットワーク(CNN)に基づく教師なしセグメンテーションを用いて最初に同定する。
雑草感染地域は、細調整されたCNNを用いて識別され、手作りの特徴を設計する必要がなくなる。
論文 参考訳(メタデータ) (2020-11-04T09:35:53Z) - Pollen13K: A Large Scale Microscope Pollen Grain Image Dataset [63.05335933454068]
この研究は、1万3千以上の天体を含む最初の大規模花粉画像データセットを提示する。
本稿では, エアロバイオロジカルサンプリング, 顕微鏡画像取得, 物体検出, セグメンテーション, ラベル付けなど, 採用データ取得のステップに注目した。
論文 参考訳(メタデータ) (2020-07-09T10:33:31Z) - Agriculture-Vision: A Large Aerial Image Database for Agricultural
Pattern Analysis [110.30849704592592]
本稿では,農業パターンのセマンティックセグメンテーションのための大規模空中農地画像データセットであるGarmry-Visionを提案する。
各画像はRGBと近赤外線(NIR)チャンネルで構成され、解像度は1ピクセルあたり10cmである。
農家にとって最も重要な9種類のフィールド異常パターンに注釈を付ける。
論文 参考訳(メタデータ) (2020-01-05T20:19:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。