Discrepancies in Epidemiological Modeling of Aggregated Heterogeneous
Data
- URL: http://arxiv.org/abs/2106.10610v1
- Date: Sun, 20 Jun 2021 03:41:19 GMT
- Title: Discrepancies in Epidemiological Modeling of Aggregated Heterogeneous
Data
- Authors: Anna L. Trella, Peniel N. Argaw, Michelle M. Li, James A. Hay
- Abstract summary: We show that state-of-the-art models for estimating epidemiological parameters, e.g.transmission rates, can be inappropriate when faced with complex systems.
We generate three complex outbreak scenarios by combining incidence curves from multiple epidemics.
We evaluate two data-generating models within this Bayesian inference framework.
- Score: 1.433758865948252
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Within epidemiological modeling, the majority of analyses assume a single
epidemic process for generating ground-truth data. However, this assumed data
generation process can be unrealistic, since data sources for epidemics are
often aggregated across geographic regions and communities. As a result,
state-of-the-art models for estimating epidemiological parameters,
e.g.~transmission rates, can be inappropriate when faced with complex systems.
Our work empirically demonstrates some limitations of applying epidemiological
models to aggregated datasets. We generate three complex outbreak scenarios by
combining incidence curves from multiple epidemics that are independently
simulated via SEIR models with different sets of parameters. Using these
scenarios, we assess the robustness of a state-of-the-art Bayesian inference
method that estimates the epidemic trajectory from viral load surveillance
data. We evaluate two data-generating models within this Bayesian inference
framework: a simple exponential growth model and a highly flexible Gaussian
process prior model. Our results show that both models generate accurate
transmission rate estimates for the combined incidence curve at the cost of
generating biased estimates for each underlying epidemic, reflecting highly
heterogeneous underlying population dynamics. The exponential growth model,
while interpretable, is unable to capture the complexity of the underlying
epidemics. With sufficient surveillance data, the Gaussian process prior model
captures the shape of complex trajectories, but is imprecise for periods of low
data coverage. Thus, our results highlight the potential pitfalls of neglecting
complexity and heterogeneity in the data generation process, which can mask
underlying location- and population-specific epidemic dynamics.
Related papers
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Neural Likelihood Approximation for Integer Valued Time Series Data [0.0]
We construct a neural likelihood approximation that can be trained using unconditional simulation of the underlying model.
We demonstrate our method by performing inference on a number of ecological and epidemiological models.
arXiv Detail & Related papers (2023-10-19T07:51:39Z) - Metapopulation Graph Neural Networks: Deep Metapopulation Epidemic
Modeling with Human Mobility [14.587916407752719]
We propose a novel hybrid model called MepoGNN for multi-step multi-region epidemic forecasting.
Our model can not only predict the number of confirmed cases but also explicitly learn the epidemiological parameters.
arXiv Detail & Related papers (2023-06-26T17:09:43Z) - SPADE4: Sparsity and Delay Embedding based Forecasting of Epidemics [2.578242050187029]
We propose Sparsity and Delay Embedding based Forecasting (SPADE4) for predicting epidemics.
We show that our approach outperforms compartmental models when applied to both simulated and real data.
arXiv Detail & Related papers (2022-11-11T23:39:48Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Unifying Epidemic Models with Mixtures [28.771032745045428]
The COVID-19 pandemic has emphasized the need for a robust understanding of epidemic models.
Here, we introduce a simple mixture-based model which bridges the two approaches.
Although the model is non-mechanistic, we show that it arises as the natural outcome of a process based on a networked SIR framework.
arXiv Detail & Related papers (2022-01-07T19:42:05Z) - OutbreakFlow: Model-based Bayesian inference of disease outbreak
dynamics with invertible neural networks and its application to the COVID-19
pandemics in Germany [0.19791587637442667]
We present a novel combination of epidemiological modeling with specialized neural networks.
We are able to obtain reliable probabilistic estimates for important disease characteristics, such as generation time, fraction of undetected infections, likelihood of transmission before symptom onset, and reporting delays using a very moderate amount of real-world observations.
arXiv Detail & Related papers (2020-10-01T11:01:49Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.